36 research outputs found

    Estimating the proportion of microarray probes expressed in an RNA sample

    Get PDF
    A fundamental question in microarray analysis is the estimation of the number of expressed probes in different RNA samples. Negative control probes available in the latest microarray platforms, such as Illumina whole genome expression BeadChips, provide a unique opportunity to estimate the number of expressed probes without setting a threshold. A novel algorithm was proposed in this study to estimate the number of expressed probes in an RNA sample by utilizing these negative controls to measure background noise. The performance of the algorithm was demonstrated by comparing different generations of Illumina BeadChips, comparing the set of probes targeting well-characterized RefSeq NM transcripts with other probes on the array and comparing pure samples with heterogenous samples. Furthermore, hematopoietic stem cells were found to have a larger transcriptome than progenitor cells. Aire knockout medullary thymic epithelial cells were shown to have significantly less expressed probes than matched wild-type cells

    Estimating the proportion of microarray probes expressed in an RNA sample

    Get PDF
    A fundamental question in microarray analysis is the estimation of the number of expressed probes in different RNA samples. Negative control probes available in the latest microarray platforms, such as Illumina whole genome expression BeadChips, provide a unique opportunity to estimate the number of expressed probes without setting a threshold. A novel algorithm was proposed in this study to estimate the number of expressed probes in an RNA sample by utilizing these negative controls to measure background noise. The performance of the algorithm was demonstrated by comparing different generations of Illumina BeadChips, comparing the set of probes targeting well-characterized RefSeq NM transcripts with other probes on the array and comparing pure samples with heterogenous samples. Furthermore, hematopoietic stem cells were found to have a larger transcriptome than progenitor cells. Aire knockout medullary thymic epithelial cells were shown to have significantly less expressed probes than matched wild-type cells

    Mapping of Human Autoantibody Binding Sites on the Calcium-Sensing Receptor

    Get PDF
    Previously, we have demonstrated the presence of anti-calcium-sensing receptor (CaSR) antibodies in patients with autoimmune polyglandular syndrome type 1 (APS1), a disease that is characterized in part by hypoparathyroidism involving hypocalcemia, hyperphosphatemia, and low serum levels of parathyroid hormone. The aim of this study was to define the binding domains on the CaSR of anti-CaSR antibodies found in APS1 patients and in one patient suspected of having autoimmune hypocalciuric hypercalcemia (AHH). A phage-display library of CaSR peptides was constructed and used in biopanning experiments with patient sera. Selectively enriched IgG-binding peptides were identified by DNA sequencing, and subsequently, immunoreactivity to these peptides was confirmed in ELISA. Anti-CaSR antibody binding sites were mapped to amino acid residues 41–69, 114–126, and 171–195 at the N-terminal of the extracellular domain of the receptor. The major autoepitope was localized in the 41–69 amino acid sequence of the CaSR with antibody reactivity demonstrated in 12 of 12 (100%) APS1 patients with anti-CaSR antibodies and in 1 AHH patient with anti-CaSR antibodies. Minor epitopes were located in the 114–126 and 171–195 amino acid domains, with antibody reactivity shown in 5 of 12 (42%) and 4 of 12 (33%) APS1 patients, respectively. The results indicate that epitopes for anti-CaSR antibodies in the AHH patient and in the APS1 patients who were studied are localized in the N-terminal of the extracellular domain of the receptor. The present work has demonstrated the successful use of phage-display technology in the discovery of CaSR-specific epitopes targeted by human anti-CaSR antibodies. © 2010 American Society for Bone and Mineral Research

    Estimating the proportion of microarray probes expressed in an RNA sample

    Get PDF
    A fundamental question in microarray analysis is the estimation of the number of expressed probes in different RNA samples. Negative control probes available in the latest microarray platforms, such as Illumina whole genome expression BeadChips, provide a unique opportunity to estimate the number of expressed probes without setting a threshold. A novel algorithm was proposed in this study to estimate the number of expressed probes in an RNA sample by utilizing these negative controls to measure background noise. The performance of the algorithm was demonstrated by comparing different generations of Illumina BeadChips, comparing the set of probes targeting well-characterized RefSeq NM transcripts with other probes on the array and comparing pure samples with heterogenous samples. Furthermore, hematopoietic stem cells were found to have a larger transcriptome than progenitor cells. Aire knockout medullary thymic epithelial cells were shown to have significantly less expressed probes than matched wild-type cells.Wei Shi, Carolyn A. de Graaf, Sarah A. Kinkel, Ariel H. Achtman, Tracey Baldwin, Louis Schofield, Hamish S. Scott, Douglas J. Hilton and Gordon K. Smyt
    corecore