4 research outputs found

    Evaluation of the wear label description in carpets by using local binary pattern techniques

    No full text
    Carpet manufacturers certify their products for end-use applications by evaluating the wear behavior of their carpets in mechanical experiments. Currently, this process is performed by visual inspection, suffering from subjective gathers that limit reliability. To automate this process, we propose the use of image processing techniques, specifically of local binary pattern (LBP) statistics. Such statistics are tolerant against illumination changes, can be easily implemented, and perform well when combined with a symmetrized adaptation of the Kullback–Leibler divergence. As a main innovation, we extend the existing rotationally invariant LBPs by including ‘mirror’ and ‘complement’ invariants. We show an accurately improved and more reliable estimation of the degree of wear in worn carpets. The evaluation is performed on four digital reference scales, each containing eight pairs of images comparing transitional degrees of wear to the original appearance. Additionally, the texture changes due to distortions of the pile yarn tufts are enhanced by choosing a suitable scale factor per reference. We validate the findings using six physical reference scales, each containing four pairs of images. In both references, linear correlations of over 0.89 are demonstrated between the degrees of wear and extracted features from the images. These findings justify the use of the proposed LBP extensions in a first approach towards an automated low-cost inspection system for carpet wear at low computation cost

    A comprehensive review of global production and recycling methods of polyolefin (PO) based products and their post-recycling applications

    No full text
    corecore