215 research outputs found

    A novel mutation 5' to the HMG box of the SRY gene in a case of Swyer syndrome

    Get PDF
    We describe a novel mutation in the coding region of the SRY gene in a 46,XY female with Swyer syndrome. Analysis of SRY was carried out by direct sequencing of a 780-bp PCR product that included the SRY open reading frame (ORF). This revealed the presence of a point mutation, ins108A, in the coding region 50 to the HMG box which results in a frame shift and premature termination of the encoded protein. No other mutation was found in the SRY ORF. We infer that sex reversal in this individual is a result of this insertion. In none of the 13 other 46, XY females that were studied was a mutation detected in SRY, confirming earlier findings that most cases of XY femaleness are due to causes other than mutation in SRY. These observations and those of others are discussed in relation to the aetiology of XY sex reversal

    Genomic aberrations in borderline ovarian tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>According to the scientific literature, less than 30 borderline ovarian tumors have been karyotyped and less than 100 analyzed for genomic imbalances by CGH.</p> <p>Methods</p> <p>We report a series of borderline ovarian tumors (n = 23) analyzed by G-banding and karyotyping as well as high resolution CGH; in addition, the tumors were analyzed for microsatellite stability status and by FISH for possible 6q deletion.</p> <p>Results</p> <p>All informative tumors were microsatellite stable and none had a deletion in 6q27. All cases with an abnormal karyotype had simple chromosomal aberrations with +7 and +12 as the most common. In three tumors with single structural rearrangements, a common breakpoint in 3q13 was detected. The major copy number changes detected in the borderline tumors were gains from chromosome arms 2q, 6q, 8q, 9p, and 13q and losses from 1p, 12q, 14q, 15q, 16p, 17p, 17q, 19p, 19q, and 22q. The series included five pairs of bilateral tumors and, in two of these pairs, informative data were obtained as to their clonal relationship. In both pairs, similarities were found between the tumors from the right and left side, strongly indicating that bilaterality had occurred via a metastatic process. The bilateral tumors as a group showed more aberrations than did the unilateral ones, consistent with the view that bilaterality is a sign of more advanced disease.</p> <p>Conclusion</p> <p>Because some of the imbalances found in borderline ovarian tumors seem to be similar to imbalances already known from the more extensively studied overt ovarian carcinomas, we speculate that the subset of borderline tumors with detectable imbalances or karyotypic aberrations may contain a smaller subset of tumors with a tendency to develop a more malignant phenotype. The group of borderline tumors with no imbalances would, in this line of thinking, have less or no propensity for clonal evolution and development to full-blown carcinomas.</p

    Clinical potential for noninvasive prenatal diagnosis through detection of fetal cells in maternal blood

    Get PDF
    Summary Fetal cells circulate in maternal blood and are considered a suitable means by which to detect fetal genetic and chromosomal abnormalities. This approach has the advantage of being noninvasive. Since the early 1990s, nucleated erythrocytes (NRBCs) have been considered good target cells for a number of techniques, including fluorescence-activated cell sorting and magnetic cell sorting, using antibodies such as anti-transferrin receptor and anti-?-hemoglobin antibodies, followed by analysis with fluorescence in situ hybridization or polymerase chain reaction. In the late 1990s, the National Institute of Child Health and Human Development Fetal Cell Isolation Study assessed the reliability of noninvasive prenatal diagnosis of fetal aneuploidy using NRBCs isolated from maternal circulation. This study revealed the limitations of NRBC separation using antibodies specific for NRBC antigens. A more recent study has demonstrated the efficiency and success of recovery of NRBCs using a galactose-specific lectin, based on the observation that erythroid precursor cells have a large quantity of galactose molecules on their cell surface. Thus, recent advances in this field enhance the feasibility of this diagnostic method. This review article focuses on various methods of detection of fetal cells within the maternal circulation, as well as the status of previous and current studies and the prospective view for noninvasive prenatal diagnosis using fetal cells from the maternal circulation

    Reciprocal translocation mosaicism in man

    No full text
    corecore