126 research outputs found

    Composite laminate tailoring with probabilistic constraints and loads

    Get PDF
    A reliability-based structural synthesis procedure was developed to tailor laminates to meet reliability-based (ply) strength requirements and achieve desirable laminate responses. The main thrust is to demonstrate how to integrate the optimization technique in the composite laminate tailoring process to meet reliability design requirements. The question of reliability arises in fiber composite analysis and design because of the inherent scatter that is observed in the constituent (fiber and matrix) material properties during experimentation. Symmetric and asymmetric composite laminates subject to mechanical loadings are considered as application examples. These application examples illustrate the effectiveness and ease with which reliability considerations can be integrated in the design optimization model for composite laminate tailoring

    Monte Carlo investigation of transient acoustic fields in partially or completely bounded medium

    Get PDF
    A simple repetitive calculation was used to investigate what happens to the field in terms of the signal paths of disturbances originating from the energy source. The computation allowed the field to be reconstructed as a function of space and time on a statistical basis. The suggested Monte Carlo method is in response to the need for a numerical method to supplement analytical methods of solution which are only valid when the boundaries have simple shapes, rather than for a medium that is bounded. For the analysis, a suitable model was created from which was developed an algorithm for the estimation of acoustic pressure variations in the region under investigation. The validity of the technique was demonstrated by analysis of simple physical models with the aid of a digital computer. The Monte Carlo method is applicable to a medium which is homogeneous and is enclosed by either rectangular or curved boundaries

    ZapE is a novel cell division protein interacting with FtsZ and modulating the Z-ring dynamics

    Get PDF
    Bacterial cell division requires the formation of a mature divisome complex positioned at the midcell. The localization of the divisome complex is determined by the correct positioning, assembly, and constriction of the FtsZ ring (Z-ring). Z-ring constriction control remains poorly understood and (to some extent) controversial, probably due to the fact that this phenomenon is transient and controlled by numerous factors. Here, we characterize ZapE, a novel ATPase found in Gram-negative bacteria, which is required for growth under conditions of low oxygen, while loss of zapE results in temperature-dependent elongation of cell shape. We found that ZapE is recruited to the Z-ring during late stages of the cell division process and correlates with constriction of the Z-ring. Overexpression or inactivation of zapE leads to elongation of Escherichia coli and affects the dynamics of the Z-ring during division. In vitro, ZapE destabilizes FtsZ polymers in an ATP-dependent manner. IMPORTANCE Bacterial cell division has mainly been characterized in vitro. In this report, we could identify ZapE as a novel cell division protein which is not essential in vitro but is required during an infectious process. The bacterial cell division process relies on the assembly, positioning, and constriction of FtsZ ring (the so-called Z-ring). Among nonessential cell division proteins recently identified, ZapE is the first in which detection at the Z-ring correlates with its constriction. We demonstrate that ZapE abundance has to be tightly regulated to allow cell division to occur; absence or overexpression of ZapE leads to bacterial filamentation. As zapE is not essential, we speculate that additional Z-ring destabilizing proteins transiently recruited during late cell division process might be identified in the future

    Crucial contribution of the multiple copies of the initiator tRNA genes in the fidelity of tRNAfMet selection on the ribosomal P-site in Escherichia coli

    Get PDF
    The accuracy of the initiator tRNA (tRNAfMet) selection in the ribosomal P-site is central to the fidelity of protein synthesis. A highly conserved occurrence of three consecutive G–C base pairs in the anticodon stem of tRNAfMet contributes to its preferential selection in the P-site. In a genetic screen, using a plasmid borne copy of an inactive tRNAfMet mutant wherein the three G–C base pairs were changed, we isolated Escherichia coli strains that allow efficient initiation with the tRNAfMet mutant. Here, extensive characterization of two such strains revealed novel mutations in the metZWV promoter severely compromising tRNAfMet levels. Low cellular abundance of the chromosomally encoded tRNAfMet allows efficient initiation with the tRNAfMet mutant and an elongator tRNAGln, revealing that a high abundance of the cellular tRNAfMet is crucial for the fidelity of initiator tRNA selection on the ribosomal P-site in E. coli. We discuss possible implications of the changes in the cellular tRNAfMet abundance in proteome remodeling

    The Min System and Nucleoid Occlusion Are Not Required for Identifying the Division Site in Bacillus subtilis but Ensure Its Efficient Utilization

    Get PDF
    Precise temporal and spatial control of cell division is essential for progeny survival. The current general view is that precise positioning of the division site at midcell in rod-shaped bacteria is a result of the combined action of the Min system and nucleoid (chromosome) occlusion. Both systems prevent assembly of the cytokinetic Z ring at inappropriate places in the cell, restricting Z rings to the correct site at midcell. Here we show that in the bacterium Bacillus subtilis Z rings are positioned precisely at midcell in the complete absence of both these systems, revealing the existence of a mechanism independent of Min and nucleoid occlusion that identifies midcell in this organism. We further show that Z ring assembly at midcell is delayed in the absence of Min and Noc proteins, while at the same time FtsZ accumulates at other potential division sites. This suggests that a major role for Min and Noc is to ensure efficient utilization of the midcell division site by preventing Z ring assembly at potential division sites, including the cell poles. Our data lead us to propose a model in which spatial regulation of division in B. subtilis involves identification of the division site at midcell that requires Min and nucleoid occlusion to ensure efficient Z ring assembly there and only there, at the right time in the cell cycle

    In Vivo Structure of the E. coli FtsZ-ring Revealed by Photoactivated Localization Microscopy (PALM)

    Get PDF
    The FtsZ protein, a tubulin-like GTPase, plays a pivotal role in prokaryotic cell division. In vivo it localizes to the midcell and assembles into a ring-like structure-the Z-ring. The Z-ring serves as an essential scaffold to recruit all other division proteins and generates contractile force for cytokinesis, but its supramolecular structure remains unknown. Electron microscopy (EM) has been unsuccessful in detecting the Z-ring due to the dense cytoplasm of bacterial cells, and conventional fluorescence light microscopy (FLM) has only provided images with limited spatial resolution (200–300 nm) due to the diffraction of light. Hence, given the small sizes of bacteria cells, identifying the in vivo structure of the Z-ring presents a substantial challenge. Here, we used photoactivated localization microscopy (PALM), a single molecule-based super-resolution imaging technique, to characterize the in vivo structure of the Z-ring in E. coli. We achieved a spatial resolution of ∼35 nm and discovered that in addition to the expected ring-like conformation, the Z-ring of E. coli adopts a novel compressed helical conformation with variable helical length and pitch. We measured the thickness of the Z-ring to be ∼110 nm and the packing density of FtsZ molecules inside the Z-ring to be greater than what is expected for a single-layered flat ribbon configuration. Our results strongly suggest that the Z-ring is composed of a loose bundle of FtsZ protofilaments that randomly overlap with each other in both longitudinal and radial directions of the cell. Our results provide significant insight into the spatial organization of the Z-ring and open the door for further investigations of structure-function relationships and cell cycle-dependent regulation of the Z-ring

    Methods of Improving Productivity of Research and Development

    No full text
    Interest in improving R&D productivity stemmed originally from concern that a company\u27s R&D organization has not been contributing its share. Operationally, this concern has been expressed in terms of three questions: Is the R&D organization doing the right R&D? Is the R&D being used? Is the R&D utilizing its resources (people, dollars) efficiently and effectively? To get these questions answered in the affirmative, R&D managers have to take the initiative in resolving the institutional, managerial and motivational barriers to R&D productivity. Higher quality technical work alone is not going to provide the answers, solutions to productivity improvement problems are more likely to be found in the field of management of technology. Of particular importance are the following six aspects of the R&D operations: 1) understanding the reasons why R&D fails to excel; 2) effective linkage of R&D with,overall corporate strategy; 3) effective linkage of R&D with business needs (marketing, manufacturing, etc.); 4) understanding productivity improvement strategies; 5) choosing and implementing appropriate productivity improvement strategies; 6) effective allocation of R&D resources. Research laboratories need to develop innovative ideas and new technology, to be sure. But the process of going from useful idea to marketable product require efficient management of technology with due consideration to the efficiency of the innovation process

    PASS SCHEDULE OPTIMIZATION FOR A TANDEM COLD MILL

    No full text
    corecore