16 research outputs found

    История формирования календарной лексики в персидском языке

    Get PDF
    Основная цель данной работы заключается в выявлении корней современной персидской календарной лексики, для чего следует проследить историю календарных систем Ирана, выявить их характерные черты с точки зрения лексики и определить современное состояние календарного пласта в персидском языке

    Experimental and modelling evidence of short-term effect of raindrop impact on hydraulic conductivity and overland flow intensity

    No full text
    International audienceTropical montane areas of Southeast Asia are exposed to high-intensity rainfall during the monsoon period. This is particularly problematic in areas where soils on steep slopes are cultivated as it can lead to heavy runoff, high soil erosion, and water pollution. The objective of this paper is to analyse the effect of the impact of raindrops on the dynamics of runoff on such steep fields. Experiments under simulated rainfall were performed at the plot scale (1 m2) to quantify water export from the surface of upland agricultural soils during overland flow events. Four 1 m2 plots were divided in duplicated treatment groups: (a) control with no amendments, and (b) amended with pig manure. Each plot was divided into two 0.5 m2 rectangular subplots. One subplot was designated as a rain splash treatment; the other sub-plot was covered with a 2 mm grid size wire screen that was located 12 cm above the soil surface. The purpose of the screen was to break the raindrops into fine droplets and to reduce fall height in order to drastically reduce their kinetic energy. Runoff was measured for each sub-plot. The results show that raindrop impact drastically enhances runoff generation on both bare soils and on manure amended soils. When the impact of raindrops was limited by screening, runoff was higher on amended soils than on bare soils.The temporal evolution of runoff was correctly modelled using a soil hydraulic conductivity that exponentially decreases over time of exposure to rainfall. Both experimental and modelling results showed that droplet energy induces a rapid evolution of the hydraulic properties of the soil surface due to crusting, resulting in a reduction of hydraulic conductivity and a concomitant increase in runoff rate

    Experimental and modelling evidence of splash effects on manure borne Escherichia coli washoff

    No full text
    International audienceIn tropical montane South-East Asia, recent changes in land use have induced increased runoff, soil erosion and in-stream suspended sediment loads. Land use change is also contributing to increased microbial pathogen dissemination and contamination of stream waters. Escherichia coli (E. coli) is frequently used as an indicator of faecal contamination. Field rain simulations were conducted to examine how E. coli is exported from the surface of upland, agricultural soils during runoff events. The objectives were to characterize the loss dynamics of this indicator from agricultural soils contaminated with livestock waste, and to identify the effect of splash on washoff. Experiments were performed on nine 1 m2 plots, amended or not with pig or poultry manure. Each plot was divided into two 0.5 m2 sub-plots. One of the two sub-plots was protected with a mosquito net for limiting the raindrop impact effects. Runoff, soil detachment by raindrop impact and its entrainment by runoff, and E. coli loads and discharge were measured for each sub-plot. The results show that raindrop impact strongly enhances runoff generation, soil detachment and entrainment and E. coli export. When the impact of raindrops was reduced with a mosquito net, total runoff was reduced by more than 50%, soil erosion was on average reduced by 90% and E. coli export from the amended soil surface was on average 3 to 8 times lower. A coupled physics-based approach was performed using the Cast3M platform for modelling the time evolutions of runoff, solid particles detachment and transfer and bacteria transport that were measured for one of the nine plots. After estimation of the saturated hydraulic conductivity, soil erodibility and attachment rate of bacteria, model outputs were consistent with measured runoff coefficients, suspended sediment and E. coli loads. This work therefore underlines the need to maintain adequate vegetation at the soil surface to avoid the erosion and export of soil borne potential pathogens towards downstream aquatic systems

    Hydrologic modeling of fecal indicator bacteria in a tropical mountain catchment

    No full text
    The occurrence of pathogen bacteria in surface waters threatens the world population health. In particular, fecal contamination of surface waters have been issued in developing countries such Lao P.D.R. where surface water is highly contaminated with pathogens of fecal origin due to the lack of adequate sanitation systems. However, the environmental fate and transport of Fecal Indicator Bacteria (FIB) is still poorly known in tropical areas, including LAO P.D.R. In this study, observations on bacterial water quality and flow rates in a 60-ha atchment in Northern Laos were used to explore the watershed-scale fate and transport of FIB Escherichia coli (E.coli) by using the Soil and Water Assessment Tool (SWAT), wherein the influences of the bacterial regrowth, deposition, resuspension, and hyporheic exchange on FIB level were explored. This study applied three different modules to simulate E.coli concentration in stream: 1) original SWAT b acteria module which considers a die-off process only, 2) modified SWAT bacteria module by adding sediment resuspension and deposition, and 3) modified SWAT bacteria module with bacterial regrowth/hyporheic exchange. The results demonstrated that the hyporheic ex change of bacteria across the Sediment-Water Interface (SWI) should be considered to simulate FIB concentration not only during wet weather, but also during the dry season, or base flow period. However, the regrowth process could not simulate FIB concentration throughout the year and can only simulate the wet and dry seasons separately

    Hydrological modeling of Fecal Indicator Bacteria in a tropical mountain catchment

    No full text
    The occurrence of pathogen bacteria in surface waters is a threat to public health worldwide. In particular, inadequate sanitation resulting in high contamination of surface water with pathogens of fecal origin is a serious issue in developing countries such as Lao P.D.R. Despite the health implications of the consumption of contaminated surface water, the environmental fate and transport of pathogens of fecal origin and their indicators (Fecal Indicator Bacteria or FIB) are still poorly known in tropical areas. In this study, we used measurements of flow rates, suspended sediments and of the FIB Escherichia coli (E. coli) in a 60-ha catchment in Northern Laos to explore the ability of the Soil and Water Assessment Tool (SWAT) to simulate watershed-scale FIB fate and transport. We assessed the influences of 3 in-stream processes, namely bacteria deposition and resuspension, bacterial regrowth, and hyporheic exchange (i.e. transient storage) on predicted FIB numbers. We showed that the SWAT model in its original version does not correctly simulate small E. coli numbers during the dry season. We showed that model's performance could be improved when considering the release of E. coli together with sediment resuspension. We demonstrated that the hyporheic exchange of bacteria across the Sediment-Water Interface (SWI) should be considered when simulating FIB concentration not only during wet weather, but also during the dry season, or baseflow period. In contrast, the implementation of the regrowth process did not improve the model during the dry season without inducing an overestimation during the wet season. This work thus underlines the importance of taking into account in-stream processes, such as deposition and resuspension, regrowth and hyporheic exchange, when using SWAT to simulate FIB dynamics in surface waters.clos

    Decay Rate of Escherichia coli in a Mountainous Tropical Headwater Wetland

    No full text
    International audienceSurface water contamination by pathogen bacteria remains a threat to public health in the rural areas of developing countries. Fecal indicator bacteria (FIB) like Escherichia coli (E. coli) are widely used to assess water contamination, but their behavior in tropical ecosystems is poorly documented. Our study focused on headwater wetlands which are likely to play a key role in stream water purification of fecal pollutants. Our main objectives were to: (i) evaluate decay rates (k) of the total, particle-attached and free-living E. coli; (ii) quantify the relative importance of solar radiation exposition and suspended particles deposition on k; and (iii) investigate E. coli survival in the deposited sediment. We installed and monitored 12 mesocosms, 4500 mL each, across the main headwater wetland of the Houay Pano catchment, northern Lao People’s Democratic Republic (Lao PDR), for 8 days. The four treatments with triplicates were: sediment deposition-light (DL); sediment deposition-dark (DD); sediment resuspension-light (RL); and sediment resuspension-dark (RD). Particle-attached bacteria predominated in all mesocosms (97 ± 6%). Decay rates ranged from 1.43 ± 0.15 to 1.17 ± 0.13 day−1 for DL and DD treatments, and from 0.50 ± 0.15 to −0.14 ± 0.37 day−1 for RL and RD treatments. Deposition processes accounted for an average of 92% of E. coli stock reduction, while solar radiation accounted for around 2% over the experiment duration. The sampling of E. coli by temporary resuspension of the deposited sediment showed k values close to zero, suggesting potential survival or even growth of bacteria in the sediment. The present findings may help parameterizing hydrological and water quality models in a tropical context

    Hydrological Regime and Water Shortage as Drivers of the Seasonal Incidence of Diarrheal Diseases in a Tropical Montane Environment

    No full text
    International audienceBackgroundThe global burden of diarrhea is a leading cause of morbidity and mortality worldwide. In montane areas of South-East Asia such as northern Laos, recent changes in land use have induced increased runoff, soil erosion and in-stream suspended sediment loads, and potential pathogen dissemination. To our knowledge, few studies have related diarrhea incidences to catchment scale hydrological factors such as river discharge, and loads of suspended sediment and of Fecal Indicator Bacteria (FIB) such as Escherichia coli, together with sociological factors such as hygiene practices. We hypothesized that climate factors combined with human behavior control diarrhea incidence, either because higher rainfall, leading to higher stream discharges, suspended sediment loads and FIB counts, are associated with higher numbers of reported diarrhea cases during the rainy season, or because water shortage leads to the use of less safe water sources during the dry season. Using E. coli as a FIB, the objectives of this study were thus (1) to characterize the epidemiological dynamics of diarrhea in Northern Laos, and (2) to identify which hydro-meteorological and sociological risk factors were associated with diarrhea epidemics.MethodsConsidering two unconnected river catchments of 22 and 7,448 km2, respectively, we conducted a retrospective time series analysis of meteorological variables (rainfall, air temperature), hydrological variables (discharge, suspended sediments, FIB counts, water temperature), and the number of diarrheal disease cases reported at 6 health centers located in the 5 southern districts of the Luang Prabang Province, Lao PDR. We also examined the socio-demographic factors potentially affecting vulnerability to the effect of the climate factors, such as drinking water sources, hygiene habits, and recreational water exposure.ResultsUsing thus a mixed methods approach, we found E. coli to be present all year long (100–1,000 Most Probable Number or MPN 100 mL-1) indicating that fecal contamination is ubiquitous and constant. We found that populations switch their water supply from wells to surface water during drought periods, the latter of which appear to be at higher risk of bacterial contamination than municipal water fountains. We thus found that water shortage in the Luang Prabang area triggers diarrhea peaks during the dry and hot season and that rainfall and aquifer refill ends the epidemic during the wet season. The temporal trends of reported daily diarrhea cases were generally bimodal with hospital admissions peaking in February-March and later in May-July. Annual incidence rates were higher in more densely populated areas and mostly concerned the 0–4 age group and male patients.ConclusionsWe found that anthropogenic drivers, such as hygiene practices, were at least as important as environmental drivers in determining the seasonal pattern of a diarrhea epidemic. For diarrheal disease risk monitoring, discharge or groundwater level can be considered as relevant proxies. These variables should be monitored in the framework of an early warning system provided that a tradeoff is found between the size of the monitored catchment and the frequency of the measurement

    Quantifying the effect of overland flow on Escherichia coli pulses during floods: use of a tracer-based approach in an erosion-prone tropical catchment

    No full text
    International audienceBacterial pathogens in surface waters threaten human health. The health risk is especially high in developing countries where sanitation systems are often lacking or deficient. Considering twelve flash-flood events sampled from 2011 to 2015 at the outlet of a 60-ha tropical montane headwater catchment in Northern Lao PDR, and using Escherichia coli as a fecal indicator bacteria, our objective was to quantify the contributions of both surface runoff and sub-surface flow to the in-stream concentration of E. coli during flood events, by (1) investigating E. coli dynamics during flood events and among flood events and (2) designing and comparing simple statistical and mixing models to predict E. coli concentration in stream flow during flood events. We found that in-stream E. coli concentration is high regardless of the contributions of both surface runoff and sub-surface flow to the flood event. However, we measured the highest concentration of E. coli during the flood events that are predominantly driven by surface runoff. This indicates that surface runoff, and causatively soil surface erosion, are the primary drivers of in-stream E. coli contamination. This was further confirmed by the step-wise regression applied to instantaneous E. coli concentration measured in individual water samples collected during the flood events, and by the three models applied to each flood event (linear model, partial least square model, and mixing model). The three models showed that the percentage of surface runoff in stream flow was the best predictor of the flood event mean E. coli concentration. The mixing model yielded a Nash-Sutcliffe efficiency of 0.65 and showed that on average, 89% of the in-stream concentration of E. coli resulted from surface runoff, while the overall contribution of surface runoff to the stream flow was 41%. We also showed that stream flow turbidity and E. coli concentration were positively correlated, but that turbidity was not a strong predictor of E. coli concentration during flood events. These findings will help building adequate catchment-scale models to predict E. coli fate and transport, and mapping the related risk of fecal contamination in a global changing context

    Effect of environmental variables on <i>E</i>. <i>coli</i> counts in S4 from May 2011 to December 2012.

    No full text
    <p>The last 3 columns present the results of the LRT and show the significances of each variable, correcting for the potential confounding effects of the other variables. No auto-regressive coefficient was included in the model since no significant temporal auto-correlation was detected by the Durbin-Watson test.</p
    corecore