10 research outputs found

    Fundamental research questions in subterranean biology

    Get PDF
    Five decades ago, a landmark paper inSciencetitledThe Cave Environmentheralded caves as ideal natural experimental laboratories in which to develop and address general questions in geology, ecology, biogeography, and evolutionary biology. Although the 'caves as laboratory' paradigm has since been advocated by subterranean biologists, there are few examples of studies that successfully translated their results into general principles. The contemporary era of big data, modelling tools, and revolutionary advances in genetics and (meta)genomics provides an opportunity to revisit unresolved questions and challenges, as well as examine promising new avenues of research in subterranean biology. Accordingly, we have developed a roadmap to guide future research endeavours in subterranean biology by adapting a well-established methodology of 'horizon scanning' to identify the highest priority research questions across six subject areas. Based on the expert opinion of 30 scientists from around the globe with complementary expertise and of different academic ages, we assembled an initial list of 258 fundamental questions concentrating on macroecology and microbial ecology, adaptation, evolution, and conservation. Subsequently, through online surveys, 130 subterranean biologists with various backgrounds assisted us in reducing our list to 50 top-priority questions. These research questions are broad in scope and ready to be addressed in the next decade. We believe this exercise will stimulate research towards a deeper understanding of subterranean biology and foster hypothesis-driven studies likely to resonate broadly from the traditional boundaries of this field.Peer reviewe

    A conservation roadmap for the subterranean biome

    Get PDF
    The 15th UN Convention on Biological Diversity (CBD) (COP15) will be held in Kunming, China in October 2021. Historically, CBDs and other multilateral treaties have either alluded to or entirely overlooked the subterranean biome. A multilateral effort to robustly examine, monitor, and incorporate the subterranean biome into future conservation targets will enable the CBD to further improve the ecological effectiveness of protected areas by including groundwater resources, subterranean ecosystem services, and the profoundly endemic subsurface biodiversity. To this end, we proffer a conservation roadmap that embodies five conceptual areas: (1) science gaps and data management needs; (2) anthropogenic stressors; (3) socioeconomic analysis and conflict resolution; (4) environmental education; and (5) national policies and multilateral agreements.Peer reviewe

    Species-area model predicting diversity loss in an artificially flooded cave in Brazil

    Get PDF
    Subterranean environments are poorly known regarding many ecological aspects, such as community structure and its response to different disturbances. To estimate the effects of ground area lost in a limestone cave community in Southeastern Brazil, the invertebrate fauna was sampled before 76% of the cave floor was submerged by the filling of a hydroeletric power plant reservoir. Then, a 2-year monitoring was conducted. A species-area curve based on empiric data was constructed and the z-value of the species-area equation was calculated, what allowed estimating the expected cave richness after flooding comparing with data obtained during the monitoring. The results support the species-area relationship hypothesis; the cave community showed a drastic reduction of richness after losing area. Furthermore, it was also possible to estimate the species richness using the species-area equation. Moreover, the cave community showed a high temporal beta diversity when comparing the community sampled before and after the inundation; this pattern becomed less pronunciated over time. A high z-value (z = 0.58) was found for the cave species-area equation, indicating that subterranean communities are even more damaged by area loss than other environments probably due to the reduced mobility of cave invertebrates and the physical isolation of this environment. The present study highlighted that area loss resulted in a drastic reduction of cave richness. Additionally, it became evident that whenever possible studies should consider the original condition of a cave community and their responses after disturbances. Such strategy is critically important for conservation purposes

    Drivers of ant composition, richness, and trophic guilds in Neotropical iron ore cavities

    Get PDF
    Subterranean habitats may be considered limiting for animal colonization, especially for ants, due to permanent darkness and mainly because of oligotrophic conditions. While not as deep as limestone caves, iron ore caves and other subterranean habitats may be more available for colonization because of their shallower depth. We use the richness and composition of ants to assess how differences in habitat structure affect the biodiversity and ecosystem function between cavities and surrounding epigean landscapes. We predicted that the distribution of ants would be different because of the variation in habitat structure and cavity conditions may act as a filter for colonization by ants. A high diversity of ants was found in the 20 sampled cavities (26 species), and most of them were grouped in the generalist trophic guilds. The distribution of ants occurred independently of the type of cavity to which they are associated (caves, impacted caves and mines). Significant differences were observed in ant richness between epigean and cavities habitats, with lower average richness in cavities. The physical attributes of the cavities did not influence richness, mainly because cavity use by ants can usually be explained by their opportunistic habits and generalist lifestyle. Ants can participate directly in the cavities assemblage, playing roles in species composition and trophic functionality, due to the lower use restriction

    Antimicrobial resistance profiles of Staphylococcus aureus clusters on small dairy farms in southern Brazil.

    Get PDF
    In intensive dairy farming, persistent intramammary infection has been associated with specific Staphylococcus (S.) aureus strains, and these strains may be resistant to antimicrobials. The objective of this study was to evaluate the antimicrobial resistance phenotypes of S. aureus isolates and to assess the distribution and the persistence of clonal groups in small dairy herds of southern Brazil. Milk samples were collected from all lactating cows from 21 dairy farms over a two-year period, totaling 1,060 samples. S. aureus isolates were tested for susceptibility to thirteen antimicrobials using the disk diffusion method. The total DNA of the isolates was subjected to SmaI digestion followed by pulsed-field gel electrophoresis (PFGE). Banding patterns differing by ≤4 bands were considered members of a single PFGE cluster. The frequency of S. aureus isolation ranged from 3.45% to 70.59% among the 17 S. aureus-positive herds. Most S. aureus isolates (87.1%) were susceptible to all antimicrobials; resistance to penicillin (18.2%) was the most frequently observed. The 122 isolates subjected to macrorestriction analysis were classified into 30 PFGE-clusters. Among them, only 10 clusters were intermittent or persistent over the two-year period. The majority (93.6%) of isolates belonging to persistent and intermittent clusters were susceptible to all tested antimicrobials. S. aureus intramammary colonization in small dairy farms of southern Brazil is most frequently caused by sporadic PFGE clusters, although some persistent clusters can arise over time. Both sporadic and persistent isolates were highly susceptible to antimicrobials.201

    Growing knowledge: an overview of Seed Plant diversity in Brazil

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Growing knowledge: an overview of Seed Plant diversity in Brazil

    No full text
    Abstract An updated inventory of Brazilian seed plants is presented and offers important insights into the country's biodiversity. This work started in 2010, with the publication of the Plants and Fungi Catalogue, and has been updated since by more than 430 specialists working online. Brazil is home to 32,086 native Angiosperms and 23 native Gymnosperms, showing an increase of 3% in its species richness in relation to 2010. The Amazon Rainforest is the richest Brazilian biome for Gymnosperms, while the Atlantic Rainforest is the richest one for Angiosperms. There was a considerable increment in the number of species and endemism rates for biomes, except for the Amazon that showed a decrease of 2.5% of recorded endemics. However, well over half of Brazillian seed plant species (57.4%) is endemic to this territory. The proportion of life-forms varies among different biomes: trees are more expressive in the Amazon and Atlantic Rainforest biomes while herbs predominate in the Pampa, and lianas are more expressive in the Amazon, Atlantic Rainforest, and Pantanal. This compilation serves not only to quantify Brazilian biodiversity, but also to highlight areas where there information is lacking and to provide a framework for the challenge faced in conserving Brazil's unique and diverse flora
    corecore