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ABSTRACT  83 

Five decades ago, a landmark paper in Science titled The Cave Environment heralded caves as 84 

ideal natural experimental laboratories in which to develop and address general questions in 85 

geology, ecology, biogeography, and evolutionary biology. Although the ‘caves as laboratory’ 86 

paradigm has since been advocated by subterranean biologists, there are few examples of studies 87 

that successfully translated their results into general principles. The contemporary era of big 88 

data, modelling tools, and revolutionary advances in genetics and (meta)genomics provides an 89 

opportunity to revisit unresolved questions and challenges, as well as examine promising new 90 



5 

avenues of research in subterranean biology. Accordingly, we have developed a roadmap to 91 

guide future research endeavours in subterranean biology by adapting a well-established 92 

methodology of ‘horizon scanning’ to identify the highest priority research questions across six 93 

subject areas. Based on the expert opinion of 30 scientists from around the globe with 94 

complementary expertise and of different academic ages, we assembled an initial list of 258 95 

fundamental questions concentrating on macroecology and microbial ecology, adaptation, 96 

evolution, and conservation. Subsequently, through online surveys, 130 subterranean biologists 97 

with various backgrounds assisted us in reducing our list to 50 top-priority questions. These 98 

research questions are broad in scope and ready to be addressed in the next decade. We believe 99 

this exercise will stimulate research towards a deeper understanding of subterranean biology and 100 

foster hypothesis-driven studies likely to resonate broadly from the traditional boundaries of this 101 

field. 102 

 103 

Key words: biospeleology, cave biology, expert opinion, groundwater, horizon scanning, 104 
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 122 

I. INTRODUCTION 123 

In the era of the Internet, social media, and open-access mega-journals, the amount of accessible 124 

scientific information is overwhelming (Landhuis, 2016; Wakeling et al., 2016; Fire & Guestrin, 125 

2019; Jarić et al., 2020). It is estimated that more than 50 million peer-reviewed scientific papers 126 

exist (Jinha, 2010) and about 1.5 million new articles are published every year (Laurance et al., 127 

2013). To capitalize on the volume of this information and make the most of it (e.g. Ioannidis, 128 

2005; Jeschke et al., 2019), it is becoming increasingly important for scientists to explore 129 

effective ways to capture the latest advances in their field or related fields of research. Horizon 130 

scanning – i.e. the systematic examination of information to identify emerging issues and 131 

opportunities in a given research area – has become a useful tool to summarize and determine 132 

research priorities and agendas (Sutherland et al., 2011). The most important questions in 133 

ecology (Sutherland et al., 2013; McGill et al., 2019), island biogeography (Patiño et al., 2017), 134 
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and microbiology (Antwis et al., 2017), the annual identification of emerging issues in global 135 

conservation (Sutherland et al., 2020), as well as the 100 articles that every ecologist should read 136 

(Courchamp & Bradshaw, 2018), are all instructive examples where horizon scanning has 137 

successfully synthesized trends or highlighted the most promising future research avenues.  138 

 Fifty years ago, in a landmark Science paper titled The Cave Environment, Poulson & 139 

White (1969) heralded caves as ‘natural laboratories’, i.e. simplified settings that can be used to 140 

understand the principles governing the dynamics of more complex environments. Characterized 141 

by stringent environmental constraints and simple communities, subterranean habitats have been 142 

regarded as ideal systems for investigating many of the unresolved questions in ecology, 143 

biogeography, and evolutionary biology (Juan et al., 2010; Sánchez-Fernández et al., 2018; 144 

Mammola, 2019). Scientists have also studied subterranean organisms to understand human 145 

diseases such as autism (Yoshizawa et al., 2018), diabetes (Riddle et al., 2018), and cancer 146 

(Gatenby, Gillies & Brown, 2011), to investigate the engineering potential of biologically 147 

inspired materials (Lepore et al., 2012), and to discover new drugs and pharmaceutical products 148 

(Cheeptham et al., 2013). Others have even looked at caves through the lens of astrobiology, 149 

showing that the subterranean microbiome might hold clues to life beyond Earth (Northup et al., 150 

2011; Popa et al., 2011).  151 

 Although the ‘caves as laboratory’ paradigm is often advocated by subterranean 152 

biologists, examples of studies that have successfully translated their results into general 153 

principles remain few in number. Five decades after Poulson & White (1969), subterranean 154 

biology is entering a new research era dominated by big data (Zagmajster et al., 2019), 155 

modelling tools (Flôres et al., 2013; Mammola & Leroy, 2018), and increasingly cheaper 156 

molecular approaches (Pérez-Moreno, Iliffe & Bracken-Grissom, 2016; Lefébure et al., 2017). 157 
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Concomitantly, we are facing a global crisis that is negatively impacting subterranean 158 

biodiversity (Mammola et al., 2019b; Boulton, 2020). Therefore, the time is ripe to review the 159 

outstanding challenges faced by this broad-in-scope discipline, as well as promising new 160 

research avenues where subterranean-based studies may be helpful in answering general and 161 

broadly scoped questions. Because gathering multiple views on such an extensive subject is 162 

difficult, we relied on the well-established methodology of horizon scanning to identify 50 163 

fundamental, but unresolved questions in subterranean biology. With this intellectual exercise, 164 

we aimed to develop a roadmap that will guide future research endeavours and stimulate 165 

hypothesis-driven studies likely to resonate beyond the boundaries of this discipline.  166 

 167 

II. HORIZON SCANNING PROTOCOL 168 

(1) Initial list assembly 169 

We used horizon scanning methodology (Sutherland et al., 2011) and adapted the approach 170 

developed by Patiño et al. (2017) to identify priority research questions in subterranean biology. 171 

Survey coordinators (S.M. and P.C.) identified seven subject areas within the subterranean 172 

biology discipline (Table 1), namely: (1) Adaptation, (2) Origin and evolution, (3) Community 173 

ecology, (4) Macroecology and biogeography, (5) Conservation biology, (6) Microbiology and 174 

applied topics, and (7) Other topics. We included the latter subject area to cover additional topics 175 

or ideas that departed from the six core subject areas and may have been overlooked. For each 176 

subject area, survey coordinators invited a senior researcher (highlighted with asterisks in Table 177 

1) to act as panel coordinator, with the task of establishing an international panel of experts to 178 

identify and formulate a set of fundamental questions. Each panel coordinator selected and 179 

invited three or four members to join their panel, which included at least one early-career 180 
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scientist (i.e. a postdoc or researcher with less than 10 years of experience) to obtain a multi-181 

generational perspective on the different topics. Survey coordinators encouraged panel members 182 

to consult broadly with colleagues and select additional researchers to join their panels if deemed 183 

important in providing complementary expertise. In assembling the panels, our goal was to 184 

maximize multidisciplinarity, while ensuring that research interests within the seven panels 185 

covered a broad array of geographic areas, model organisms, and networks of international 186 

collaborators. Members of each panel identified at least 20 questions that they viewed as 187 

fundamental within their subject area and thus likely to advance the field significantly.  188 

 In total, we assembled 258 questions, which were screened for duplication or ambiguity 189 

by the survey coordinators. In this phase, survey coordinators purged most subterranean-specific 190 

jargon from questions and homogenized wording to ensure that all questions were presented in a 191 

clear and straightforward manner. Therefore, throughout the survey we operated under the 192 

assumption that all questions were characterized by a similar degree of readability (Plavén-193 

Sigray et al., 2017). After the cleaning procedure and removal of duplicate questions, we 194 

assembled a final list of 211 survey questions (hereafter ‘List #1’). In assembling List #1, we 195 

subsumed questions identified by the panel focusing on ‘Other topics’ into the six main subject 196 

areas. 197 

 198 

(2) Voting procedure and selection of 50 top-priority questions 199 

We subjected List #1 to an initial round of online voting by all panel members (Survey #1) to 200 

select the most voted 20 questions for each of the six subject areas (Fig. 1). Voting was a binary 201 

choice, whereby participants scored each question as either of ‘major’ or ‘minor’ importance. 202 

We randomized question order for each participant. We repeated this voting protocol in all 203 
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subsequent online surveys. Each panel member voted on all questions irrespective of subject 204 

area, although votes by panelists on their subject area were disregarded in the final ranking of 205 

Survey #1. As a result, survey coordinators culled List #1 to the 120 most-voted questions (20 206 

questions from each of six subject areas), referred to as List #2, thus balancing the number of 207 

questions in subsequent voting rounds. 208 

 We then subjected List #2 to online voting (Survey #2) by inviting a broad community of 209 

subterranean biologists including ca. 170 members of the International Society on Subterranean 210 

Biology (ISSB), ca. 50 members of the European Cave Organism Network, ca. 100 members of 211 

the Anchialine mailing list, as well as other working groups and email listservs related to 212 

subterranean biology that we could identify (e.g. national biospeleological groups). Note that 213 

members of these different groups often overlapped and some of the emails were no longer 214 

active. We estimated that Survey #2 reached an upper boundary of between 200 and 250 unique 215 

recipients. Of these, 133 recipients completed the online survey. 216 

 At the end of Survey #2, we gave participants the opportunity to submit one additional 217 

question if they felt this question was missing from List #2. Thus, 25 additional questions were 218 

added to the third list of questions (List #3). Questions in List #3 were voted on by all panel 219 

members (Survey #3), and then ranked (by percentage of ‘major importance’ votes per question) 220 

together with the 120 questions from List #2. Finally, we selected the highest ranking questions 221 

to assemble a list of 50 top-priority questions. 222 

 223 

(3) Caveats on interpretation  224 

Some general caveats should be recognized when interpreting the results of any horizon scanning 225 

survey (e.g. Sutherland et al., 2011, 2013; Seddon et al., 2014; Patiño et al., 2017). First, the 226 
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background knowledge and intellectual passions of the experts involved may introduce 227 

subjectivity in the formulation of the initial list of topics and questions. Second, subjectivity 228 

likely plays a role throughout the voting process, as any voting outcome may be affected by the 229 

interests of a particular group of participants. In our case, potential biases in the composition of 230 

subterranean biologists sampled may have influenced the final selection of the top-priority 231 

questions to an extent difficult to quantify precisely. For example, questions related to 232 

microbiology received the lowest share of ‘major importance’ votes (mean ± SD: 0.69 ± 0.01). It 233 

is understood that microbiology topics are not less important or timely, it is simply that 234 

microbiologists are probably underrepresented in the subterranean biology community. Also, an 235 

imbalance in the expertise of participants may explain the substantial difference in how the 236 

highest priority questions were parsed across the six subject areas – from four in ‘Community 237 

ecology’ to 12 in ‘Conservation biology’. 238 

 To address these potential shortcomings, we adopted four countermeasures. First, we 239 

increased the survey audience, by addressing the questionnaire to different groups and 240 

associations of subterranean biologists. Second, we diversified the expertise of panel members 241 

by including early-stage to mid- and late-career researchers from different disciplines, research 242 

laboratories, and geographic areas. Third, we included a seventh panel (‘Other topics’) 243 

specifically to fill the gaps in the initial composition of proposed questions. Indeed, it has been 244 

argued that in horizon scanning, the initial division into subject areas may limit lateral thinking 245 

(Sutherland et al., 2013). Finally, by allowing voters to suggest additional questions when voting 246 

in the survey, we were able to capture the range of priority topics better.  247 

 We are confident these practices minimized some of the biases inherent to this study. 248 

Importantly, we believe this 50 top-priority survey served to highlight some of the most timely 249 
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and challenging areas of interest in current and future research, rather than providing a 250 

comprehensive synthesis of research needs in modern subterranean biology. 251 

 252 

III. SUMMARY OF THE HORIZON SCAN 253 

In Survey #1, the percentage of ‘major importance’ votes ranged between 89% (top-voted 254 

question) and 4% (least-voted question). In the extended online voting (Survey #2), 133 voters 255 

participated, of which 71% identified ‘subterranean biology’ as their primary field of research. 256 

Although voters’ gender was slightly skewed toward males (76 men versus 57 women), 257 

deviation from the 1:1 male:female ratio was not significant (χ2 = 2.71; d.f. = 1; P = 0.10), 258 

indicating that our sample was not gender-biased. 45% of survey voters were experienced 259 

researchers, with an academic age of more than 10 years since they earned their PhD, while 29% 260 

were researchers within 10 years from their PhD. PhD and undergraduate students accounted for 261 

16% of voters. The remaining 10% of participants were other professionals, such as research and 262 

field technicians or recreational cavers. 263 

 During Survey #2, participants suggested 28 additional questions; three questions were 264 

duplicates and were thus excluded. The remaining 25 questions were evaluated during Survey 265 

#3, and three made it to the 50 top-priority list. The lower threshold for questions was 67% of 266 

‘major importance’ votes, whereas the top-voted question garnered 91% votes (Fig. 1). 267 

 In the following, we present the 50 top-priority questions in subterranean biology 268 

according to the results of Surveys #2 and #3 (the full list of questions is provided as online 269 

supporting information in Appendix S1). For clarity, questions were compiled into our six 270 

subject areas. We provide information about each question’s final rank (#) and percentage of 271 

‘major importance’ votes received (%), and highlight the three questions suggested by the  272 
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Survey #2 participants with an asterisk (*). A glossary of terms is available in Table 2. 273 

 274 

IV. ADAPTATION 275 

Q1 – What are the drivers of adaptive evolution in caves? [#1; 91%] 276 

Q2 – What are the main constraints to subterranean adaptation? [#4; 83%] 277 

Q3 – What are the degrees of adaptive plasticity of organisms across different subterranean 278 

environments? [#9; 78%] 279 

Q4 – Which traits of subterranean organisms should be considered as ‘adaptive’? [#11; 78%] 280 

Q5 – How have morphological and behavioural traits co-evolved in subterranean organisms? 281 

[#14; 76%] 282 

Q6 – What is the level and nature of reproductive isolation between cave and surface populations 283 

and what reproductive barriers are typically involved? [#19; 75%] 284 

Q7 – Do similar traits evolve repeatedly in subterranean organisms due to changes in the same 285 

genes, genetic pathways, and/or developmental processes? [#23; 73%] 286 

Q8 – Have subterranean species evolved a distinct set of convergent behaviours? [#26; 72%] 287 

Q9 – Are there common developmental pathways that promote or constrain subterranean 288 

adaptation? [#29; 72%] 289 

Q10 – Do traits that constitute reproductive isolation evolve in the same way across independent 290 

closely related subterranean populations or species? [#42; 70%] 291 

 292 

The morphology of subterranean organisms, which show bizarre convergent adaptations even 293 

across different animal phyla, has historically attracted the attention of generations of scientists 294 

(Juan et al., 2010) including Charles Darwin (1859). Therefore, it is no surprise that subterranean 295 
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biologists participating in this survey greatly valued the role of subterranean habitats as natural 296 

laboratories for the study of adaptive evolution. Ten questions focusing on adaptation were 297 

included in our top-50 list (Fig. 1).  298 

 Colonization of suitable habitat is the initial event leading to subterranean adaptation 299 

(details in Section V). Whatever the mode or pathway, colonizers often experience a significant 300 

change upon entering the subterranean environment (i.e. complete darkness), which results in 301 

visual sensory deprivation, challenges in locating mates and food, limited or modified food 302 

resources, and physical barriers to dispersal. Adaptive responses to these factors may involve the 303 

action of selection on plastic traits already existing in the colonizers (i.e. phenotypic plasticity; 304 

Bilandžija et al., 2020), standing genetic variation, or new beneficial mutations. Understanding 305 

which of these environmental factors and adaptive responses play a primary role in subterranean 306 

adaptation, either acting alone or in various combinations, was the most important question (Q1) 307 

in our survey, selected by 91% of participants. Yet, given that some higher taxa are missing or 308 

understudied in caves (Culver & Pipan, 2019), it remains unclear what are the main constraints 309 

to subterranean adaptation (Q2) and whether specific exaptations facilitate successful 310 

colonization events (see also Q11 in Section V). Resolving how many phenotypes of 311 

subterranean dwellers depend on genetic and developmental constraints (Q9), or reflect 312 

entrapment at local peaks in adaptive landscapes or recent invasions with insufficient time for 313 

selection to alter traits, is one of the future challenges for evolutionary biologists. 314 

 Additional high-priority questions were focused on subsequent refinements of the initial 315 

adaptive responses, such as the repertoire of adaptive plasticity (Q3), the degree to which pre-316 

existing genetic variation contributes to subterranean phenotypes, and which traits of 317 

subterranean organisms can be considered as adaptive (Q4). Historically, reduction or loss of 318 
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traits such as eyes and pigmentation was thought to be driven by random mutations and genetic 319 

drift or by natural selection, either directly or indirectly. This controversy has continued to the 320 

present, with strong adaptationist (Carlini & Fong, 2017) and non-adaptationist (Wilkens & 321 

Strecker, 2017) viewpoints. Depending on the species or ecological context, it is possible that all 322 

of these mechanisms have roles in subterranean adaptation. Resolving this debate will require 323 

explanations at the molecular, cellular, and developmental levels in multiple lineages (Jeffery, 324 

2005), and the integration of this information to infer whether convergent traits evolve repeatedly 325 

in subterranean animals due to changes in the same or different genes, genetic pathways, and 326 

developmental processes (Q7). Answers to all these questions will contribute to our 327 

understanding concerning why some species adapt rapidly and evolve when facing new 328 

environmental conditions, inside or outside caves, which is a critical question given global 329 

climate change (Walther et al., 2002). In turn, this could provide insights about adaptive 330 

processes occurring in other ecological settings with a similar set of environmental conditions 331 

(e.g. permanent darkness, constancy in climatic conditions, food scarcity), such as deep-sea 332 

habitats (Trontelj, Borko & Delić, 2019; Mammola, 2020). 333 

 Once survival in a subterranean habitat is ensured, the successful colonizers are subject to 334 

adaptive morphological and behavioural (co-)evolution (Q5). Many behavioural changes are 335 

probably influenced by the essential requirements of finding food and mates in darkness, and 336 

may be convergent across different subterranean lineages (Q8). Also, some subterranean animals 337 

suddenly attain a new status at the top trophic level and predator release occurs. For example, in 338 

the Mexican tetra, Astyanax mexicanus (De Filippi) (Actinopterygii: Characidae), the workhorse 339 

of adaptive evolution studies in caves (Jeffery, 2009; Wilkens & Strecker, 2017; Torres-Paz et 340 

al., 2018), this new ecological status of an apex predator facilitated the evolution of a range of 341 
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behaviours that may not be sustainable in a predator-limited surface environment (Yoshizawa et 342 

al., 2010; Hyacinthe, Attia & Rétaux, 2019).  343 

 Most subterranean organisms may also face subsequent invasions of their habitats by new 344 

colonizers, of both former surface-dwelling conspecifics (if they are still extant) and other 345 

competing species (e.g. Howarth et al., 2007; Wynne et al., 2014). Therefore, to understand 346 

subterranean adaptations fully, it is crucial to explore the degree and nature of reproductive 347 

isolation between the subterranean-adapted lineages and invading surface conspecifics (Q6). The 348 

majority of subterranean animals probably arose through the process of ecological speciation in 349 

which reproductive isolation evolved as a response to divergent selection between environments 350 

(Niemiller, Fitzpatrick & Miller, 2008; Mammola et al., 2018). Thus, many subterranean 351 

adaptations should at least indirectly favour non-random mating between individuals of the 352 

derived subterranean and ancestral surface populations. Understanding this will help to address 353 

whether traits that constitute reproductive isolation evolve in the same way in independent 354 

closely related subterranean populations or species (Q10), and therefore whether and how often 355 

parallel speciation occurs in the subterranean realm. Ultimately, this would shed new light 356 

concerning the intriguing hypothesis on the predictability of evolution (Blount, Lenski & Losos, 357 

2018). 358 

 359 

V. ORIGIN AND EVOLUTION 360 

Q11 – Which traits present in surface species (exaptations) facilitate successful subterranean 361 

colonization and adaptation? [#12; 77%] 362 

Q12 – How do, and which, patterns of subterranean species diversification vary across taxa and 363 

habitats? [#13; 77%] 364 
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Q13 – What evolutionary processes most commonly triggered radiations of subterranean 365 

organisms? [#15; 76%] 366 

Q14 – Do subterranean organisms lack genetic variation and thus the ability to adapt to a 367 

changing environment? [#16; 75%] 368 

Q15 – Does the timeline of subterranean evolution differ among taxa, types of subterranean 369 

habitats, different biogeographic areas, and different ecological settings? [#22; 74%] 370 

Q16 – What are the impact(s) of biotic and abiotic factors on speciation? [#28; 72%] 371 

Q17 – Why are some lineages successful at colonizing subterranean habitats while others are 372 

not? [#35; 71%] 373 

Q18 – How old are subterranean species? [#36; 71%] 374 

Q19 – The role of evolutionary processes (convergence/divergence/evolutionary 375 

stasis/parallelisms) in subterranean organisms: what are the most common evolutionary 376 

processes? [#40; 70%] 377 

Q20 – Are shallow subterranean habitats a gateway to colonize deep zones and is the evolution 378 

of deep subterranean species conditioned with a colonization of shallow and later deeper zones? 379 

[#41; 70%] 380 

Q21 – What is the rate of evolution of different subterranean traits and does the degree of 381 

subterranean adaptation correlate with duration of subterranean inhabitation? [#44; 69%] 382 

 383 

Subterranean animals have long interested biologists as evolutionary models. Studies of these 384 

species have endeavoured to improve our understanding of evolution, its repeatability at the 385 

phenotypic (Friedrich, 2013; Porter & Sumner-Rooney, 2018), physiological (Jones, Cooper & 386 

Seymour, 2019), and molecular level (Leys et al., 2005; Bilandžija, Ćetković & Jeffery, 2012; 387 
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Niemiller et al., 2013), its reversibility (Copilaş-Ciocianu et al., 2018), and the role of drift in 388 

morphological changes (Martínez et al., 2017; Wilkens, 2020). The eleven questions identified 389 

highlight how, despite advances in the application of genetic tools and techniques in the last 50 390 

years, fundamental questions regarding the origin and evolution of subterranean animals remain 391 

unanswered. 392 

 Two high-ranked questions (Q11 and Q17) focused on the traits that enable species to 393 

successfully colonize and adapt to subterranean habitats. Additional questions focused on the 394 

most common evolutionary processes (Q19), and the influence of biotic and abiotic factors (Q16) 395 

that lead to different patterns of diversification across subterranean lineages (Q12). Important 396 

subterranean radiations are known in all major taxonomic groups (Deharveng & Bedos, 2019), 397 

but only a few of them have been well documented. These include Amphipoda (Zakšek et al., 398 

2019), Collembola (Lukić et al., 2019), and Coleoptera (Leys et al., 2003; Faille et al., 2010; 399 

Njunjić et al., 2018). Which evolutionary processes best explain these radiations remains highly 400 

debated (Q13) and it would be particularly interesting to compare and contrast radiations of 401 

surface-dwelling plants and animals (Gillespie et al., 2020) with subterranean-adapted species to 402 

determine if any universal patterns exist. For many animal groups, subterranean species are 403 

commonly assumed to have evolved from surface species (Barr & Holsinger, 1985; Peck & 404 

Finston, 1993), but recent phylogenetic studies suggest that this assumption may not always 405 

apply (Faille et al., 2010; Juan et al., 2010; Leijs et al., 2012). Speciation and diversification may 406 

also occur within the confines of a subterranean habitat, a process referred to as ‘endogenous 407 

diversification’ (Trontelj, 2019). Moreover, some phylogenetic studies suggested that 408 

subterranean colonization is not an evolutionary dead end and surface species may actually arise 409 

from subterranean ancestors (Prendini, Francke & Vignoli, 2010; Niemiller et al., 2013; Copilaş-410 
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Ciocianu et al., 2018). However, cases of endogenous speciation and ‘subterranean to surface’ 411 

reversals are potentially confounded by extinction of surface lineages (Juan et al., 2010). 412 

Therefore, new approaches are needed that avoid reliance on phylogenetic methods alone to 413 

improve our understanding of these patterns.  414 

 Genetic variation enhances the ability of species to adapt and diversify. Additionally, it 415 

has been shown that some subterranean species may contain high levels of neutral genetic 416 

variation (Buhay & Crandall, 2005; Guzik et al., 2009), but it is still unclear whether neutral 417 

mutations equates to high levels of adaptive genetic variation. This underpins the question 418 

whether subterranean species lack the ability to adapt to changing environments (Q14), including 419 

increasing temperatures and the introduction of new pathogens (Mammola et al., 2019c). Such 420 

hypotheses are obviously not exclusive to the subterranean environment. However, this 421 

ecosystem does provide numerous examples of how low genetic variation was hypothesized to 422 

be related to low adaptive capacity, a phenomenon more common underground than at the 423 

surface (Konec et al., 2015; Lefébure et al., 2017; Fumey et al., 2018). 424 

 Understanding the timeline and direction of subterranean evolution, as well as the age of 425 

subterranean species, featured prominently in several questions (Q15, Q18, Q20, Q21). 426 

Advances in molecular clock calibration (Drummond et al., 2006) and genomic analyses (Pérez-427 

Moreno et al., 2016) are considerably promising and permit the development of robust time trees 428 

(Pons et al., 2019). However, these analyses are limited by the availability of extant and fossil 429 

taxa and the extinction of surface relatives; the latter makes it difficult to pinpoint the initial 430 

colonization time of a subterranean habitat by a given species. This is particularly important for 431 

ancient lineages of specialized subterranean organisms with marine origin, which often lack 432 

surface-dwelling relatives and/or show low levels of fossilization (Pérez-Moreno et al., 2016). 433 
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This is unfortunate because many of these basally branching lineages are required to reconstruct 434 

trait evolution of major animal lineages (e.g. Johnson et al., 2012; Khodami et al., 2017; Lozano-435 

Fernandez et al., 2019). 436 

 The genetic basis underlying evolution of subterranean traits, and how they are shaped by 437 

natural selection and/or neutral processes, are key factors in determining rates of subterranean 438 

evolution (Q21). Considerable advances have been made through the study of model 439 

subterranean species, especially Astyanax mexicanus and the freshwater isopod Asellus aquaticus 440 

(L.) (Protas & Jeffery, 2012). These species have several independent and recently evolved 441 

subterranean populations, as well as extant surface populations, which can be hybridized in the 442 

laboratory. Their features allow for the dissection of genes and mutations responsible for traits 443 

related to subterranean life and provide information on the processes (e.g. selection or neutral 444 

evolution) that shape their evolution. The role of neutral processes in the evolution of 445 

subterranean animals has also been explored using alternative model systems (e.g. dytiscid 446 

beetles and amblyopsid cavefishes). In both cases, species have been evolving underground for 447 

millions of years, which is sufficient to enable the fixation of deleterious mutations in genes 448 

under relaxed selection (Niemiller et al., 2013; Tierney et al., 2018). These model organisms 449 

offer great potential to investigate major questions on the origin and evolution of subterranean 450 

animals using comparative genomics, and thus may provide insights for similar processes in 451 

other, non-subterranean, settings. 452 
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VI. COMMUNITY ECOLOGY 453 

Q22 – What are the main ecological and ecosystem services provided by subterranean 454 

populations and communities? [#20; 75%] 455 

Q23 – What are the key food-web processes influencing subterranean community dynamics? 456 

[#24; 73%] 457 

Q24 – How do stochastic events interact with long-term trends in subterranean ecosystems? 458 

[#30; 72%] 459 

Q25 – How do basic life-history characteristics differ among subterranean communities and 460 

between subterranean and surface communities? [#33; 71%] 461 

 462 

Subterranean habitats are well-suited systems to address general problems in community ecology 463 

(Mammola, 2019). Foremost, caves are often semi-closed environments extensively replicated 464 

across the Earth (Culver, 1970; Culver & Pipan, 2019; Itescu, 2019; Mammola, 2019). Second, 465 

subterranean communities generally exhibit lower diversity and abundance of organisms than 466 

surface ones and are characterized by a bottom-truncated functional diversity (Gibert & 467 

Deharveng, 2002), allowing us to disentangle the effect of abiotic conditions and biotic 468 

interactions in filtering species possessing specific traits within the community (Cardoso, 2012). 469 

Third, caves have some conspicuous environmental gradients from the surface towards the 470 

subsurface (Howarth, 1982; Tobin, Hutchins & Schwartz, 2013; Mammola et al., 2019d), 471 

offering a mosaic structure of subterranean microhabitats defined by distinct habitat-filtering 472 

properties (Trontelj, Blejec & Fišer, 2012; Mammola et al., 2020).  473 

 Four questions in community ecology made it to the top-50 list. This result reflects a 474 

general trend in subterranean biology, where researchers have primarily focused on caves as 475 
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model systems for evolutionary studies (Juan et al., 2010), and secondarily used caves as 476 

convenient settings to address fundamental ecological questions (Mammola, 2019). Yet, these 477 

four questions fell within general and timely areas of current ecological research (see Sutherland 478 

et al., 2013). 479 

 The top-ranked question underscored the importance of services provided to humans by 480 

subterranean species and ecosystems (Q22), rather than on theoretical aspects of community 481 

ecology. Examples of ecosystem services provided by subterranean ecosystems include 482 

pollination, seed dispersal, and agricultural pest control by bats (Kunz et al., 2011; Medellin, 483 

Wiederholt & Lopez-Hoffman, 2017), provision of clean water (Griebler & Avramov, 2015), 484 

serving as a source for new pharmaceutical products (Cheeptham et al., 2013), and even cheese 485 

production (Ozturkoglu-Budak et al., 2016). While services with direct benefit to humans have 486 

received some attention, values provided by subterranean ecosystems extend far beyond direct 487 

human needs. In light of emerging conservation issues associated with subterranean ecosystems 488 

(Mammola et al., 2019b), investigating ecological services and links between above- and below-489 

ground diversity in ecosystem functioning is crucial. 490 

 Two questions called for more research into life-history characteristics (e.g. growth rates, 491 

age and size at sexual maturity, longevity, and survival rates; Q25) and food-web specificities of 492 

subterranean communities (Q23). Interactions among life-history traits determine the fitness of 493 

each population, while interactions between populations and the environment dictate the 494 

distribution of species (Steranrs, 1992). Only a few studies have described life histories of 495 

subterranean species, and this is partially explained by the challenges of captive breeding and the 496 

technical problems and effort necessary to conduct in situ comprehensive studies (Vonk & 497 

Nijman, 2006; Voituron et al., 2011; Venarsky, Huryn & Benstead, 2012; Riesch et al., 2016; 498 
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Simon et al., 2017). Consequently, the lack of knowledge on cave species traits limits our 499 

understanding of evolutionary and ecological processes occurring in subterranean ecosystems. 500 

 Energy limitation is considered a primary mechanism influencing both evolutionary and 501 

ecological processes in subterranean environments (Venarsky & Huntsman, 2018). However, a 502 

more nuanced understanding of subterranean food-web dynamics (Q23) will require other 503 

research actions, including to (i) understand the spatial and temporal dynamics of energy 504 

resources; (ii) compare resource quality with consumers’ physiological requirements; and (iii) 505 

compare consumption rates with resource availability in subterranean habitats with different 506 

environmental conditions (e.g. terrestrial versus aquatic, fresh versus salt water, and detrital 507 

versus chemolithoautotrophic food webs). 508 

Finally, understanding the role of stochastic events in caves was highlighted as a deficient 509 

area in community ecology (Q24). Given that these events are increasing in frequency amid the 510 

environmental crisis of the new millennium (Rahmstorf & Coumou, 2011), the study of 511 

stochastic phenomena has emerged as a central topic in ecology (Scheffer et al., 2001). Recent 512 

papers used groundwater crustaceans to elucidate some of the mechanisms by which earthquakes 513 

affect the composition and structure of biological communities (Galassi et al., 2014; Fattorini et 514 

al., 2017; Fattorini, Di Lorenzo & Galassi, 2018; Morimura et al., 2020). Additional studies have 515 

focused on the effect of other events, such as heavy precipitation (Calderón-Gutiérrez, Sánchez-516 

Ortiz & Huato-Soberanis, 2018) and flooding (Pacioglu et al., 2019). Although it may seem 517 

counterintuitive to study stochastic environmental shifts in caves, as they have been traditionally 518 

perceived as stable ecosystems, these examples show how caves may represent promising model 519 

systems for quantifying the impacts of abrupt environmental shifts driving ecosystem evolution 520 

(Mammola, 2019).   521 
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VII. MACROECOLOGY AND BIOGEOGRAPHY 522 

Q26 – What drives subterranean patterns of phylogenetic and functional diversity? [#21; 75%] 523 

Q27 – Would the use of novel molecular methods (e.g. metabarcoding, environmental DNA) 524 

provide new insights on subterranean biodiversity patterns and affect known patterns? [#27; 525 

72%] 526 

Q28 – What is the species richness pattern of subterranean organisms globally? [#31; 72%] 527 

Q29 – What factors drive the relative importance of speciation, extinction, and dispersal in 528 

shaping subterranean diversity patterns across regions? [#34; 71%] 529 

Q30 – Are current subterranean biodiversity patterns best explained by history of colonization of 530 

surface ancestors or by in situ speciation and dispersal in subterranean habitats? [#39; 70%] 531 

Q31 – How can sampling effort be standardized so that comparisons of species richness are 532 

unbiased? [#43; 69%] 533 

 534 

Over the last 20 years, research in subterranean ecology is shifting from local to landscape 535 

studies aiming to document and understand biodiversity patterns at regional to global scales 536 

(Zagmajster et al., 2019). This transition is not without difficulties, as it requires linking 537 

biodiversity patterns to eco-evolutionary processes with little to no possibility for manipulative 538 

experiments. Six questions in ‘Macroecology and biogeography’ were identified in the top-50 539 

list (Fig. 1). These questions mirror the main challenges faced when documenting and 540 

understanding broad-scale biodiversity patterns at the surface. The first challenge is assembling 541 

the data required to bring out the characteristic features of biodiversity patterns at such broad 542 

scales, while ensuring these patterns are not biased by sampling effort (Q28, Q31). Secondly, to 543 

combine multiple sampling techniques, species identification methods (e.g. morphological and 544 
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DNA-based identification), and biodiversity metrics (e.g. alpha, beta, and gamma diversity) in a 545 

meaningful way to elucidate the many facets of biodiversity patterns (e.g. taxonomic, 546 

phylogenetic, and/or functional diversity; Jarzyna & Jetz, 2016) (Q27, Q26). Lastly, the relative 547 

contributions of different evolutionary processes (Q29) and diversification hypotheses (Q30) in 548 

shaping biodiversity patterns should be fully examined. 549 

 The publication of global subterranean diversity maps and databases is a recent 550 

phenomenon (Culver & Pipan, 2019; Zagmajster et al., 2019). While diversity maps are 551 

informative as they portray differences in species richness among regions or countries, we still 552 

lack global maps showing species richness for spatial units of equal area [but see Zagmajster, 553 

Culver & Sket (2008), Niemiller & Zigler (2013), and Eme et al. (2015) for examples of 554 

regional- and continental-scale diversity maps]. Several approaches have been developed to 555 

minimize differences in species richness due to sampling bias (Q31). This issue is particularly 556 

germane to difficulties in sampling subterranean habitats. For example, sampling protocols were 557 

typically standardized among sites and completeness of species inventories were assessed using 558 

accumulation and rarefaction curves (Zagmajster et al., 2008; Dole-Olivier et al., 2009; Wynne 559 

et al., 2018). Also, observed species richness patterns were tested for robustness using species 560 

richness estimators (Zagmajster et al., 2014), or complemented with species richness predictions 561 

modelled from environmental data (Mokany et al., 2019).  562 

 Beyond accounting for sampling biases, molecular methods are increasingly useful in 563 

understanding subterranean biodiversity patterns (Q27). For example, a recent study comparing 564 

latitudinal patterns of crustacean species range size obtained from morphology- and DNA-based 565 

species delimitation showed that the pattern of increasing median range size at higher latitudes 566 

was more evident when delimiting species with DNA (Eme et al., 2018) (Fig. 2). As sequencing 567 
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becomes increasingly applied to subterranean taxa, environmental DNA sampling and 568 

monitoring may be also used to detect these species in areas difficult to access (Gorički et al., 569 

2017; Niemiller et al., 2018), thus resulting in more accurate maps of their distributions. To our 570 

knowledge, patterns of phylogenetic and functional diversity at continental to global scales have 571 

not been documented for any subterranean taxon (Q26), despite the growing knowledge of 572 

phylogenetic relationships and species traits (Morvan et al., 2013; Fernandes, Batalha & 573 

Bichuette, 2016; Fišer et al., 2019; Mammola et al., 2020). Documenting these patterns will 574 

further underscore the relative importance of dispersal, extinction, and different speciation 575 

modes in shaping geographic variation of species richness. Given the differences in global 576 

diversity patterns between subterranean and surface habitats, comparing the two systems might 577 

help further to elucidate the key drivers of diversity. 578 

 Recent macroecological studies have shown that historical climatic variability, spatial 579 

heterogeneity, and energy contribute to species richness patterns of subterranean taxa in Europe. 580 

However, the contributions of these factors vary regionally and across taxa (Eme et al., 2015; 581 

Bregović & Zagmajster, 2016; Bregović, Fišer & Zagmajster, 2019; Mammola et al., 2019a). At 582 

a landscape scale, linking environmental factors with speciation, extinction, and dispersal 583 

dynamics (Q29), as well as diversification processes (Q30), remains challenging and requires the 584 

use of phylogenetic methods and a large number of specimens for DNA analysis (Stern et al., 585 

2017). Yet phylogenetic methods encompass uncertainties that are highly sensitive to sampling 586 

bias and the confounding effect of extinction, both obscuring the inference of transitions to 587 

subterranean life. To ameliorate this, genes that lose their function soon after the transition 588 

should be used (Lefébure et al., 2017) (see also Section V). 589 

 590 
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VIII. CONSERVATION 591 

Q32 – How does climate change affect subterranean-adapted organisms? [#2; 84%] 592 

Q33 – What are the effects of pollution on subterranean-restricted microorganisms, arthropods, 593 

and vertebrates? [#3; 84%] 594 

Q34 – What is the impact of above-ground disturbance on subterranean environments and their 595 

fauna? [#5; 82%] 596 

Q35 – How can we evaluate the ecological status of subterranean ecosystems? [#6; 80%] 597 

Q36 – How can we protect subterranean-adapted species from invasive species? [#7; 80%] 598 

Q37 – How can we combine policy, education, research, and management to safeguard 599 

subterranean biodiversity effectively? [#8; 80%] 600 

Q38* – What factors determine the size and location of effective protected areas in subterranean 601 

environments? [#10; 78%] 602 

Q39* – How can we effectively involve governments and key stakeholders in the conservation of 603 

caves and other subterranean systems? [#17; 75%] 604 

Q40 – What would be the best monitoring protocols to quantify long-term changes in the 605 

distribution and abundance of subterranean invertebrates? [#18; 75%] 606 

Q41 – How do we address the lack of knowledge (biodiversity shortfalls) about the biology of 607 

subterranean species to enhance proper conservation measures? [#25; 73%] 608 

Q42 – Can subterranean-adapted organisms be used as bioindicators of the health of 609 

subterranean ecosystems? [#45; 69%] 610 

Q43 – How does the use of caves by humans (e.g. tourism, religious, therapeutic, and 611 

recreational activities) affect subterranean ecosystems? [#48; 68%] 612 

 613 
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Ecosystems are experiencing biodiversity loss at an unprecedented rate worldwide (Barnosky et 614 

al., 2011; Dirzo et al., 2014; IPBES, 2018; Cardoso et al., 2020). Thus, conservation and 615 

management of cave biological diversity is of the utmost concern among subterranean biologists 616 

(Mammola et al., 2019b). Conservation questions comprised most of the questions (24%) in our 617 

top-50 list (Fig. 1). Of these, 10 questions were part of the initial List #1, while two additional 618 

questions were suggested by survey participants. Three questions (Q32, Q33, and Q36) 619 

highlighted three of the greatest threats to biodiversity worldwide – climate change (Ripple et al., 620 

2019), pollution (Ripple et al., 2017), and invasive alien species (Pyšek et al., 2020) – whose 621 

effects are pervasive also underground (Mammola et al., 2019b). Additional questions were 622 

centred on the impacts of above-ground disturbance (Q34) and human activities (Q43) on 623 

subterranean habitats. All these threats can be combined and described as ‘habitat loss and 624 

degradation’, which is one of the most important drivers of biodiversity loss globally (IPBES, 625 

2018). Subterranean habitat loss and degradation is primarily due to surface activities, such as 626 

agricultural expansion and intensification, urbanization, and mining activities (Reboleira et al., 627 

2013; Mammola et al., 2019b; Castaño-Sánchez, Hose & Reboleira, 2020). Human activities 628 

inside caves may also constitute localized threats, with recreational use and tourism activities 629 

being of particular concern (Fernandez-Cortes et al., 2011; Faille, Bourdeau & Deharveng, 630 

2015). In certain areas, people are even poaching rare invertebrate species for private collections 631 

(Simičević, 2017), as in the discussed case of Anophthalmus hitleri Scheibel (Coleoptera: 632 

Carabidae) (Berenbaum, 2010). 633 

 Evaluating, understanding, and mitigating these threats are primarily hampered by our 634 

scarce knowledge of subterranean organisms’ biology (Q41), especially life-history traits (see 635 

Q25 in Section VI). Understanding changes in species’ abundance and distribution will be 636 



29 

crucial to halting biodiversity loss in subterranean habitats. Studies aimed at identifying 637 

bioindicator species (Q42) to help bolster long-term monitoring programs (Q40) are needed. 638 

Additionally, improved sampling procedures and characterizing cave communities in previously 639 

undocumented areas would both enhance our knowledge of subterranean biodiversity (Mammola 640 

et al., 2019b) and improve the effectiveness of conservation measures (Q41). 641 

 Furthermore, it is crucial to adopt innovative approaches to safeguard subterranean 642 

biodiversity (Q37), as well as to determine the size and location of effective protected areas 643 

(Q38). Standardized systematic sampling techniques have been applied to terrestrial (Wynne et 644 

al., 2018, 2019) and aquatic subterranean invertebrate species (Dole-Olivier et al., 2009); to be 645 

optimally beneficial to conservation and monitoring, these techniques will need to be further 646 

scrutinized across a large breadth of taxa and systems. Recently, a cave vulnerability assessment 647 

protocol has been developed for bat cave roosts (Tanalgo, Tabora & Hughes, 2018) and, if 648 

refined, would hold promise for use with other subterranean animals.  649 

 Protected areas are the most crucial measure to safeguard specific subterranean habitats 650 

and the sensitive animal populations they often support (Q38). Indices have been developed for 651 

site selection and conservation prioritization (e.g. Borges et al., 2012; Rabelo, Souza-Silva & 652 

Ferreira, 2018; Strona et al., 2019; Fattorini et al., 2020) which are often based on 653 

complementarity, flexibility, and irreplaceability principles (Michel et al., 2009). Yet, rigorous 654 

geospatial analysis is still rarely applied when the extents of protected areas are being 655 

determined. Further considerations should include managing lands upslope from caves or entire 656 

watersheds supporting sensitive subterranean habitats. If a species-level approach is taken for 657 

establishing a protected area, it would be reasonable to protect the land at the hydrogeologic unit 658 

(i.e. watershed or karst/volcanic unit) level – as animals are expected to use mesocaverns or 659 
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unconsolidated sediments for dispersal (Howarth, 1983; Malard et al., 2017; Trontelj, 2019). 660 

Importantly, such an approach should be based on the most accurate estimation of the relevant 661 

animal’s distributional range.  662 

 While effective legislation and/or management plans exist for some subterranean species 663 

and some regions of the world, overall management policies for most regions of speleological 664 

importance are lacking (Q39). Only a few countries have national cave protection laws. For 665 

example, the United States Federal Cave Protection Act of 1988 has been used as a tool to 666 

manage caves on federally owned lands, while Brazil requires geological and biological 667 

assessments of caves and stipulates mitigation of any human activities that may negatively 668 

impact cave natural resources. In any case, to be fully operational, such legislative and 669 

management tools need to be based on the best available science including a comprehensive 670 

knowledge of fauna distribution (Brooks, Da Fonseca & Rodrigues, 2004; Samways et al., 2020) 671 

and traits of the species of concern (Chichorro, Juslén & Cardoso, 2019; Fattorini et al., 2020). 672 

Importantly, management plans will require both financial, governmental, and local community 673 

support for their implementation. Unfortunately, most countries lack the capacity or legislation to 674 

protect and conserve sensitive subterranean resources. 675 

 676 

IX. MICROBIOLOGY AND APPLIED TOPICS 677 

Q44 – What is the role of Bacteria, Archaea, fungi, and viruses in nutrient cycling in 678 

subterranean systems? [#32; 71%] 679 

Q45 – How adaptable are cave microorganisms to changing environmental conditions (e.g. 680 

climate change)? [#37; 70%] 681 

Q46 – How do other organisms (humans and other animals), and their activities (e.g. visiting 682 
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humans and global climate change) influence cave microbiome diversity patterns? [#38; 70%] 683 

Q47 – How does the range of energy sources and quantity influence the diversity of subterranean 684 

microbiota? [#46; 68%] 685 

Q48 – What are the limiting nutrients for subterranean microbiota and how do they affect overall 686 

subterranean microbial diversity? [#47; 68%] 687 

Q49 – How do subterranean microorganisms cycle key elements – nitrogen, iron, carbon, sulfur, 688 

and phosphorus? [#49; 67%] 689 

Q50* – What is the role of microorganisms in cave-formation processes (speleogenesis) in 690 

subterranean environments? [#50; 67%] 691 

 692 

Without a doubt, topics such as adaptation, origin and evolution, community dynamics, and 693 

biogeographic distribution patterns are similarly important and actively targeted in microbial 694 

ecology (Antwis et al., 2017). However, research in macroecology and microbial ecology is 695 

often conducted separately rather than hand-in-hand. For nearly 200 years, subterranean 696 

ecosystems have been studied from a macroscopic perspective. Subterranean microbiological 697 

research is a relatively new discipline with most research having been conducted since the 698 

middle of the last century (Griebler & Lueders, 2009). A modern ecosystem approach to 699 

subterranean biota requires consideration across all trophic levels and scales (Hershey & Barton, 700 

2019), especially since the 1980s, when the first cave ecosystems fully sustained by in situ 701 

chemosynthetic primary production were discovered (Sarbu, Kane & Kinkle, 1996; Kumaresan 702 

et al., 2014). 703 

 The seven questions on the top-50 list address general problems that have been frequently 704 

examined for various subterranean ecosystems, such as alluvial aquifers, however, less 705 
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systematically for cave environments. Three questions focused on the active role of 706 

microorganisms in nutrient cycling (Q44, Q49) and how nutrient limitations influence microbial 707 

diversity (Q48). Although we know that microbes rule the subsurface in terms of element cycles 708 

(Ortiz et al., 2014; Kimble et al., 2018) and constitute the basis of the food web, we still lack 709 

detailed information on conversion rates and growth kinetics. In addition, subterranean 710 

organisms often persist with limited energy resources. Thus, understanding their specific 711 

adaptations would help advance our understanding of adaptive strategies for microorganisms in 712 

other ecosystems (e.g. mountain-summit and deep-sea habitats). Additionally, the role of viruses, 713 

which only recently has been recognized as ‘tremendous’ for groundwater ecosystems (Griebler, 714 

Malard & Lefébure, 2014), has not been investigated for terrestrial subterranean systems (Q44). 715 

 Two questions further addressed the resistance and resilience of cave microbial 716 

communities to disturbance from changes in environmental conditions (Q45) (Cavicchioli et al., 717 

2019), and the impacts of other organisms (in particular, humans; Moldovan et al., 2020; 718 

Martínez et al., 2020) on microbial diversity (Q46). These questions also were related to 719 

conservation issues from a microbiological perspective. The adverse impacts of the fungus 720 

Pseudogymnoascus destructans that causes white-nose syndrome in North American bats is a 721 

prominent example. To date, P. destructans occurs in 38 U.S. states and seven Canadian 722 

provinces (see http://www.whitenosesyndrome.org), which raises serious concerns for the 723 

conservation of hibernating bat species and the ecosystem services they provide (Kunz et al., 724 

2011; Boyles et al., 2011; Medellin et al., 2017; Mammola et al., 2019b). The fungus is an 725 

opportunistic environmental pathogen, which can remain in the subterranean environment and 726 

contribute to the cave microbiome even in the absence of its host (Lorch et al., 2013).  727 

 It has been hypothesized that microbial communities with high diversity and functional 728 

http://www.whitenosesyndrome.org/
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redundancy do not select for ecosystems poor in energy and stable in environmental conditions 729 

(Griebler & Lueders, 2009). Thus, the introduction of novel species may have a destabilizing 730 

effect on a cave’s biological equilibrium (Q46). The same is true for the introduction of 731 

contaminants, such as organic compounds and nutrients that provide additional energy. We are 732 

only beginning to understand whether and how energy–diversity relationships known from 733 

macroecology apply to complex natural bacterial communities (Q47). In fact, there is a growing 734 

body of evidence that diversity–productivity relationships also drive microbial communities 735 

(Smith, 2007), but this question has not been examined systematically in subterranean 736 

ecosystems yet.  737 

 Finally, Q50 points to the potential contribution of microorganisms in speleogenetic 738 

processes, such as weathering and rock formation via inducing precipitation. Specifically, in 739 

terms of (inorganic) carbon cycling in face of climate change, the role of microbes in the 740 

formation of caves may be of great relevance, and has yet to be fully examined.  741 

 742 

X. CONCLUSIONS 743 

(1) The 50th anniversary of Poulson & White’s (1969) article was the perfect time to reflect on 744 

milestone scientific achievements obtained in the natural laboratories offered by caves, while 745 

also delineating the most important research priorities for years to come. We have shown how 746 

subterranean biology has contributed strongly to general scientific questions via the study of 747 

evolutionary and ecological processes along the vertical dimension (i.e. the evolutionary 748 

transition from the surface to the subsurface). These accomplishments resonate with the 749 

sentiments of Poulson & White (1969) and we anticipate that biologists will continue to unravel 750 

the mysteries of subterranean ecosystems and contribute to scientific knowledge more broadly, 751 



34 

insofar as revolutionary advances in approaches and technologies continue to foster and nurture 752 

novel paradigms. 753 

(2) There is a significant lack of knowledge concerning eco-evolutionary processes underlying 754 

biodiversity patterns along the horizontal gradient (i.e. within subterranean habitats). This is 755 

largely driven by a paucity of functional ecology studies, the weakness of trait-based approaches 756 

(Cardoso, 2012; Fernandes et al., 2016; Fišer et al., 2019; Mammola et al., 2020), and the lack of 757 

robust systematic sampling techniques for most taxonomic groups (Wynne et al., 2019). 758 

Bridging these gaps will significantly influence how we address and prioritize future research on 759 

the conservation and ecosystem services of subterranean habitats (e.g. Fattorini et al., 2020), as 760 

emphasized by the large number of unresolved questions in conservation biology (representing 761 

nearly 25% of the top-50 list). 762 

(3) We also invite scientists to redouble their efforts to understand the diversity of subterranean 763 

life across all its components, with a special focus on linking macroscopic and microbial ecology 764 

(Foulquier et al., 2011; Mermillod-Blondin, 2011). This will enable us to achieve a mechanistic 765 

understanding of subterranean eco-evolutionary processes and ecosystem function. This 766 

information will be critical in guiding future policy decisions as human activities and global 767 

environmental change increasingly impact and strain the subterranean realm.  768 

(4) There is a concern that simple voting exercises such as this one may favour general over 769 

specific questions. Perhaps as a result of this bias, some of the top-voted questions appear to be 770 

broad in scope (e.g. Q1, Q2, and Q32). While these questions were able to capture important 771 

general lines of inquiry, specific questions may be more useful for setting applied agendas. 772 

Therefore, we invite interested readers to consult Appendix S1, which contains our complete list 773 

of 120 questions. 774 



35 

(5) While the ‘caves as laboratory’ paradigm is an effective way to frame broadly scoped studies, 775 

we recognize the top-50 list of questions primarily pertains to unresolved issues within the 776 

borders of subterranean biology. Yet subterranean habitats offer much more. Deep subterranean 777 

habitats are one of the few natural systems defined by highly stable and homogenous climatic 778 

conditions tantamount to those maintained in a laboratory (Sánchez-Fernández et al., 2018). 779 

These systems have an island-like nature (Itescu, 2019), and often support communities 780 

characterized by highly specialized organisms interacting in simplified ecological networks 781 

(Mammola, 2019). By extension, a robust understanding of these rather simplified settings may 782 

enable researchers to disentangle the complexities of more diverse systems (e.g. deep-sea 783 

habitats).  784 

(6) Ultimately, all these features point at subterranean ecosystems as ideal settings in which to 785 

tackle general questions. We strived to provide examples of how some of our survey questions 786 

may aid in addressing non-cave specific agendas. Our hope is that this horizon scan exercise both 787 

underscores the importance of caves for addressing a range of eco-evolutionary questions, as 788 

well as stimulates researchers to redouble their efforts to address some of these lingering 789 

questions in subterranean biology. 790 
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XIII. SUPPORTING INFORMATION 1322 

Additional supporting information may be found online in the Supporting Information section at 1323 

the end of the article. 1324 

Appendix S1. Questions from List #2 (i.e. 120 questions selected from List #1 during Survey#1) 1325 

and List #3 (i.e. 25 additional questions suggested by Survey #2 participants) ranked based on 1326 
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the percentage of ‘major importance’ votes. 1327 

  1328 



60 

Table 1. Subject areas, general topics addressed, panel member composition (*= panel 1329 

coordinator; °= postdoc or early career researcher), and number of questions included in the top-1330 

50 list out of the total retained in List #1. Panel members are listed alphabetically by surname. 1331 

 1332 

Subject area General topics Panel members 
Number of 

questions  

Adaptation Morphological, physiological and 

behavioural adaptations to the 

subterranean environment 

Žiga Fišer°, Daniel W. Fong, Tanja 

Pipan*, William R. Jeffery, Jure 

Jugovic 

10 out of 43 

Origin and 

evolution 

Cave ontology and past climate 

change, migration–speciation–

extinction dynamics, and 

speciation and diversification 

Steven J.B. Cooper*, Matthew 

Niemiller, Alejandro Martínez°, 

Meredith Protas 

11 out of 36  

Community 

ecology 

Population dynamics, community 

assembly, biotic interaction, 

trophic webs, and energy flows 

Rodrigo L. Ferreira*, Cene Fišer, Thais 

G. Pellegrini°, Michael Venarsky° 

4 out of 32 

Macroecology 

and 

biogeography 

Global diversity patterns 

(taxonomic, phylogenetic, 

functional), biogeography theory, 

and diversity drivers 

Maria E. Bichuette, David Eme°, 

Florian Malard*, Maja Zagmajster°  

6 out of 32  

Conservation 

biology 

Climate change, habitat loss, 

invasive species, conservation 

and management policies, and 

show-cave-related issues 

Isabel R. Amorim°, Paulo A. V. 

Borges*, Louis Deharveng, J. Judson 

Wynne, Ana Sofia P. S. Reboleira 

12 out of 37  

Microbiology 

and applied 

topics 

Microbial communities, 

industrial and pharmaceutical 

potential, epidemics, and 

exobiology 

Naowarat Cheeptham, Thomas M. 

Lilley*, Melissa B. Meierhofer°, Diana 

E. Northup 

7 out of 31 

Other topics Any topic falling outside the 

scope of the six core subject 

areas 

David C. Culver*, Christian Griebler, 

Johanna Kowalko, Raoul Manenti° 

n/a (merged within 

the other subject 

areas) 
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Table 2. Glossary of terms. 1334 

 1335 

Term General definition 

Cave A human-accessible subterranean space, either a single chamber or series of chambers, 

formed within different substrata (Curl, 1964). Note that a cave is just one among the 

wide variety of subterranean habitats (see definition below). 

Exaptation A trait shaped by selection or neutral evolution co-opted for a new function (Gould & 

Vrba, 1982). 

Speleogenetic process The process of water dissolving surrounding rock, gradually forming passages that 

evolve into cave systems (Audra & Palmer, 2011). 

Subterranean habitat(s) / 

ecosystem(s) 

The breadth of underground voids of different sizes, either dry or filled with water, 

sharing two main ecological features: the absence of sunlight and buffered climatic 

conditions. Examples of subterranean habitats include caves, groundwater, anchialine 

systems, artificially excavated underground voids, shallow subterranean habitats, as 

well as deep maze of fissures and pore spaces with size prohibiting human entry 

(Culver & Pipan, 2019). 
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FIGURE LEGENDS  1337 

 1338 

Fig. 1. Survey workflow, summary statistics of survey participants, and the breakdown by 1339 

subject area of the 50 highest priority research questions. 1340 

 1341 

Fig. 2. The relationship between median range size (maximum linear extent) per latitudinal band 1342 

and latitude for 147 European groundwater species of Niphargidae (Amphipoda) and Aselloidea 1343 

(Isopoda) delimited using morphology (A) and a molecular species delimitation method (B). 1344 

Molecular delimitation was performed by a Bayesian implementation of the Poisson tree 1345 

processes (Zhang et al., 2013) approach based on molecular phylogenies inferred from 2883 1346 

cytochrome c oxidase subunit I sequences. Black horizontal bars, dots, and boxes show the 1347 

median, average, and interquartile range, respectively, for 0.9° latitudinal bands. The maximum 1348 

length of each whisker is up to 1.5 times the interquartile range. Trend lines (with 95% 1349 

confidence intervals) represent the fit of a gamma generalized linear model to the averages of 1350 

latitudinal bands and its quadratic (A) and cubic (B) term. Data re-analysed from Eme et al. 1351 

(2018). 1352 
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