258 research outputs found

    How Industrial Distributors View Distributor-Supplier Partnership Arrangements

    Get PDF
    This nationwide survey reports distributors\u27 perspectives of their relationship with a core supplier. The survey reports on elements of partnership, expectations, outcomes, and satisfaction relating to the relationship\u27s position on a continuum between arm\u27s length and close partnership styles

    How Industrial Distributors View Distributor-Supplier Partnership Arrangements

    Get PDF
    This nationwide survey reports distributors\u27 perspectives of their relationship with a core supplier. The survey reports on elements of partnership, expectations, outcomes, and satisfaction relating to the relationship\u27s position on a continuum between arm\u27s length and close partnership styles

    A New Approach for Determining Phase Response Curves Reveals that Purkinje Cells Can Act as Perfect Integrators

    Get PDF
    Cerebellar Purkinje cells display complex intrinsic dynamics. They fire spontaneously, exhibit bistability, and via mutual network interactions are involved in the generation of high frequency oscillations and travelling waves of activity. To probe the dynamical properties of Purkinje cells we measured their phase response curves (PRCs). PRCs quantify the change in spike phase caused by a stimulus as a function of its temporal position within the interspike interval, and are widely used to predict neuronal responses to more complex stimulus patterns. Significant variability in the interspike interval during spontaneous firing can lead to PRCs with a low signal-to-noise ratio, requiring averaging over thousands of trials. We show using electrophysiological experiments and simulations that the PRC calculated in the traditional way by sampling the interspike interval with brief current pulses is biased. We introduce a corrected approach for calculating PRCs which eliminates this bias. Using our new approach, we show that Purkinje cell PRCs change qualitatively depending on the firing frequency of the cell. At high firing rates, Purkinje cells exhibit single-peaked, or monophasic PRCs. Surprisingly, at low firing rates, Purkinje cell PRCs are largely independent of phase, resembling PRCs of ideal non-leaky integrate-and-fire neurons. These results indicate that Purkinje cells can act as perfect integrators at low firing rates, and that the integration mode of Purkinje cells depends on their firing rate

    A Computational Mechanism for Unified Gain and Timing Control in the Cerebellum

    Get PDF
    Precise gain and timing control is the goal of cerebellar motor learning. Because the basic neural circuitry of the cerebellum is homogeneous throughout the cerebellar cortex, a single computational mechanism may be used for simultaneous gain and timing control. Although many computational models of the cerebellum have been proposed for either gain or timing control, few models have aimed to unify them. In this paper, we hypothesize that gain and timing control can be unified by learning of the complete waveform of the desired movement profile instructed by climbing fiber signals. To justify our hypothesis, we adopted a large-scale spiking network model of the cerebellum, which was originally developed for cerebellar timing mechanisms to explain the experimental data of Pavlovian delay eyeblink conditioning, to the gain adaptation of optokinetic response (OKR) eye movements. By conducting large-scale computer simulations, we could reproduce some features of OKR adaptation, such as the learning-related change of simple spike firing of model Purkinje cells and vestibular nuclear neurons, simulated gain increase, and frequency-dependent gain increase. These results suggest that the cerebellum may use a single computational mechanism to control gain and timing simultaneously

    A Comparison of the Sensitivity and Fecal Egg Counts of the McMaster Egg Counting and Kato-Katz Thick Smear Methods for Soil-Transmitted Helminths

    Get PDF
    Currently, in public health, the reduction in the number of eggs excreted in stools after drug administration is used to monitor the efficacy of drugs against parasitic worms. Yet, studies comparing diagnostic methods for the enumeration of eggs in stool are few. We compared the Kato-Katz thick smear (Kato-Katz) and McMaster egg counting (McMaster) methods, which are commonly used diagnostic methods in public and animal health, respectively, for the diagnosis and enumeration of eggs of roundworms, whipworms and hookworms in 1,536 stool samples from children in five trials across Africa, Asia and South America. The Kato-Katz method was the most sensitive for the detection of roundworms, but there was no significant difference in sensitivity between the methods for hookworms and whipworms. The sensitivity of the methods differed across the trials and magnitude of egg counts. The Kato-Katz method resulted in significantly higher egg counts, but these were subject to lack of accuracy caused by intrinsic properties of this method. McMaster provided more reliable estimates of drug efficacies. We conclude that the McMaster is an alternative method for monitoring large-scale treatment programs. It allows accurate monitoring of drug efficacy and can be easily performed under field conditions

    Investigation of Variation in Gene Expression Profiling of Human Blood by Extended Principle Component Analysis

    Get PDF
    BACKGROUND: Human peripheral blood is a promising material for biomedical research. However, various kinds of biological and technological factors result in a large degree of variation in blood gene expression profiles. METHODOLOGY/PRINCIPAL FINDINGS: Human peripheral blood samples were drawn from healthy volunteers and analysed using the Human Genome U133Plus2 Microarray. We applied a novel approach using the Principle Component Analysis and Eigen-R(2) methods to dissect the overall variation of blood gene expression profiles with respect to the interested biological and technological factors. The results indicated that the predominating sources of the variation could be traced to the individual heterogeneity of the relative proportions of different blood cell types (leukocyte subsets and erythrocytes). The physiological factors like age, gender and BMI were demonstrated to be associated with 5.3% to 9.2% of the total variation in the blood gene expression profiles. We investigated the gene expression profiles of samples from the same donors but with different levels of RNA quality. Although the proportion of variation associated to the RNA Integrity Number was mild (2.1%), the significant impact of RNA quality on the expression of individual genes was observed. CONCLUSIONS: By characterizing the major sources of variation in blood gene expression profiles, such variability can be minimized by modifications to study designs. Increasing sample size, balancing confounding factors between study groups, using rigorous selection criteria for sample quality, and well controlled experimental processes will significantly improve the accuracy and reproducibility of blood transcriptome study

    Behavioural Significance of Cerebellar Modules

    Get PDF
    A key organisational feature of the cerebellum is its division into a series of cerebellar modules. Each module is defined by its climbing input originating from a well-defined region of the inferior olive, which targets one or more longitudinal zones of Purkinje cells within the cerebellar cortex. In turn, Purkinje cells within each zone project to specific regions of the cerebellar and vestibular nuclei. While much is known about the neuronal wiring of individual cerebellar modules, their behavioural significance remains poorly understood. Here, we briefly review some recent data on the functional role of three different cerebellar modules: the vermal A module, the paravermal C2 module and the lateral D2 module. The available evidence suggests that these modules have some differences in function: the A module is concerned with balance and the postural base for voluntary movements, the C2 module is concerned more with limb control and the D2 module is involved in predicting target motion in visually guided movements. However, these are not likely to be the only functions of these modules and the A and C2 modules are also both concerned with eye and head movements, suggesting that individual cerebellar modules do not necessarily have distinct functions in motor control

    Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter.

    Get PDF
    Exposure to ambient fine particulate matter (PM2.5) is a major global health concern. Quantitative estimates of attributable mortality are based on disease-specific hazard ratio models that incorporate risk information from multiple PM2.5 sources (outdoor and indoor air pollution from use of solid fuels and secondhand and active smoking), requiring assumptions about equivalent exposure and toxicity. We relax these contentious assumptions by constructing a PM2.5-mortality hazard ratio function based only on cohort studies of outdoor air pollution that covers the global exposure range. We modeled the shape of the association between PM2.5 and nonaccidental mortality using data from 41 cohorts from 16 countries-the Global Exposure Mortality Model (GEMM). We then constructed GEMMs for five specific causes of death examined by the global burden of disease (GBD). The GEMM predicts 8.9 million [95% confidence interval (CI): 7.5-10.3] deaths in 2015, a figure 30% larger than that predicted by the sum of deaths among the five specific causes (6.9; 95% CI: 4.9-8.5) and 120% larger than the risk function used in the GBD (4.0; 95% CI: 3.3-4.8). Differences between the GEMM and GBD risk functions are larger for a 20% reduction in concentrations, with the GEMM predicting 220% higher excess deaths. These results suggest that PM2.5 exposure may be related to additional causes of death than the five considered by the GBD and that incorporation of risk information from other, nonoutdoor, particle sources leads to underestimation of disease burden, especially at higher concentrations

    Nobody Is Perfect: ERP Effects Prior to Performance Errors in Musicians Indicate Fast Monitoring Processes

    Get PDF
    Background: One central question in the context of motor control and action monitoring is at what point in time errors can be detected. Previous electrophysiological studies investigating this issue focused on brain potentials elicited after erroneous responses, mainly in simple speeded response tasks. In the present study, we investigated brain potentials before the commission of errors in a natural and complex situation. Methodology/Principal Findings: Expert pianists bimanually played scales and patterns while the electroencephalogram (EEG) was recorded. Event-related potentials (ERPs) were computed for correct and incorrect performances. Results revealed differences already 100 ms prior to the onset of a note (i.e., prior to auditory feedback). We further observed that erroneous keystrokes were delayed in time and pressed more slowly. Conclusions: Our data reveal neural mechanisms in musicians that are able to detect errors prior to the execution of erroneous movements. The underlying mechanism probably relies on predictive control processes that compare the predicted outcome of an action with the action goal
    corecore