19 research outputs found

    Six pelagic seabird species of the North Atlantic engage in a fly-and-forage strategy during their migratory movements

    Get PDF
    Funding Information: We thank all the fieldworkers for their hard work collecting data. Funding for this study was provided by the Norwegian Ministry for Climate and the Environment, the Norwegian Ministry of Foreign Affairs and the Norwegian Oil and Gas Association along with 8 oil companies through the SEATRACK project (www. seapop. no/ en/ seatrack). Fieldwork in Norwegian colonies (incl. Svalbard and Jan Mayen) was supported by the SEAPOP program (www.seapop.no, grant no. 192141). The French Polar Institute (IPEV project 330 to O.C.) supported field operation for Kongsfjord kittiwakes. The work on the Isle of May was also supported by the Natural Environment Research Council (Award NE/R016429/1 as part of the UK-SCaPE programme delivering National Capability). We thank Maria Bogdanova for field support and data processing. Finally, we thank 3 anonymous reviewers for their help improving the first version of the manuscript.Peer reviewedPublisher PD

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Recent, very rapid retreat of a temperate glacier in SE Iceland

    Get PDF
    Iceland's glaciers are particularly sensitive to climate change, and their margins respond to trends in air temperature. Most Icelandic glaciers have been in retreat since c. 1990, and almost all since 1995. Using ice-front measurements, photographic and geomorphological evidence, we examined the record of ice-front fluctuations of Virkisjökull–Falljökull, a steep high-mass-turnover outlet glacier in maritime SE Iceland, in order to place recent changes in a longer-term (80-year) context. Detailed geomorphological mapping identifies two suites of annual push moraines: one suite formed between c. 1935 and 1945, supported by lichenometric dating; the other between 1990 and 2004. Using moraine spacing as a proxy for ice-front retreat rates, we show that average retreat rates during the 1930s and 1940s (28 m a−1) were twice as high as during the period from 1990 to 2004 (14 m a−1). Furthermore, we show that both suites of annual moraines are associated with above-average summer temperatures. Since 2005, however, retreat rates have increased considerably – averaging 35 m a−1 – with the last 5 years representing the greatest amount of ice-front retreat (∼190 m) in any 5-year period since measurements began in 1932. We propose that this recent, rapid, ice-front retreat and thinning in a decade of unusually warm summers has resulted in a glaciological threshold being breached, with subsequent large-scale stagnation of the glacier terminus (i.e. no forward movement) and the cessation of annual push-moraine formation. Breaching this threshold has, we suggest, caused further very rapid non-uniform retreat and downwasting since 2005 via a system feedback between surface melting, glacier thinning, decreased driving stress and decreased forward motion

    Inter-annual variation in winter distribution affects individual seabird contamination with mercury

    No full text
    International audienceMigratory seabirds are exposed to various pollutants throughout their annual cycle. Among them, mercury (Hg) is of particular concern given its large impact on animal health. Recent studies suggest that winter is a critical period for seabirds when contamination by Hg can be higher than at other times of year. However, individuals within and between species can have different migration strategies that could affect their exposure. Here, we combined multi-year individual tracking data and Hg measurements from 6 Arctic seabird species. We investigated whether inter-annual variations in individual winter contamination with Hg was related to seabird fidelity to a wintering site over years. First, our results show that Hg concentrations above the toxicity threshold (i.e. 5 μg g–1 dry weight in feathers) were observed in variable proportions according to species (from 2% of northern fulmars to 37% of Brünnich’s guillemots). Second, individuals with high fidelity to a wintering ground had more similar Hg concentrations among years compared to individuals with low fidelity, suggesting an effect of their migratory strategy on Hg contamination. Further, we found that the directional change in wintering areas among years influenced seabird Hg contamination, highlighting an additional effect of seabirds’ winter distribution. More specifically, individuals migrating to the northwest direction of a previous wintering ground tended to be more contaminated compared those moving to eastern directions. These results confirm spatial differences in Hg concentration throughout the North Atlantic–Arctic and an east-west gradient increase in Hg concentrations. Verifying this trend will require more large-scale ecotoxicological studies at smaller spatial resolution
    corecore