1,344 research outputs found

    Two-dimensional numerical simulation of a Stirling engine heat exchanger

    Get PDF
    The first phase of an effort to develop multidimensional models of Stirling engine components is described; the ultimate goal is to model an entire engine working space. More specifically, parallel plate and tubular heat exchanger models with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects) are described. The model assumes: laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations, describing the model, were solved using Crank-Nicloson finite-difference scheme. Model predictions were compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. Excellent agreement was obtained for the model predictions with analytical solutions available for both flow in circular tubes and between parallel plates. Also the heat transfer computational results are in good agreement with the heat transfer analytical results for parallel plates

    How is Big Data Transforming Operations Models in the Automotive Industry: A Preliminary Investigation

    Get PDF
    Over the years, traditional car makers have evolved into efficient systems integrators dominating the industry through their size and power. However, with the rise of big data technology the operational landscape is rapidly changing with the emergence of the “connected” car. The automotive incumbents will have to harness the opportunities of big data, if they are to remain competitive and deal with the threats posed by the rise of new connected entrants (i.e. Tesla). These new entrants unlike the incumbents have configured their operational capabilities to fully exploit big data and service delivery rather than production efficiency. They are creating experience, infotainment and customized dimensions of strategic advantage. Therefore the purpose of this paper is to explore how “Big Data” will inform the shape and configuration of future operations models and connected car services in the automotive sector. It uses a secondary case study research design. The cases are used to explore the characteristics of the resources and processes used in three big data operations models based on a connected car framework

    Anharmonic molecular mechanics: Ab initio based Morse parameterisations for the popular MM3 force field

    Get PDF
    Methodologies for creating reactive potential energy surfaces from molecular mechanics force-fields are becoming increasingly popular. To date, molecular mechanics force-fields use harmonic expressions to treat bonding stretches, which is a poor approximation in reactive molecular dynamics simulations since bonds are displaced significantly from their equilibrium positions. For such applications there is need for a better treatment of anharmonicity. In this contribution Morse bonding potentials have been extensively parameterised for the atom types in the MM3 force field of Allinger and co-workers using high level CCSD(T)(F12*) energies. To our knowledge this is the first instance of a large-scale paramerization of Morse potentials in a popular force field

    Multi-D CFD Modeling of Free-Piston Stirling Convertor at NASA GRC

    Get PDF
    A high efficiency Stirling Radioisotope Generator (SRG) is being developed for possible use in long duration space science missions. NASA s advanced technology goals for next generation Stirling convertors include increasing the Carnot efficiency and percent of Carnot efficiency. To help achieve these goals, a multidimensional Computational Fluid Dynamics (CFD) code is being developed to numerically model unsteady fluid flow and heat transfer phenomena of the oscillating working gas inside Stirling convertors. Simulations of the Stirling convertors for the SRG will help characterize the thermodynamic losses resulting from fluid flow and heat transfer between the working gas and solid walls. The current CFD simulation represents approximated 2-dimensional convertor geometry. The simulation solves the Navier Stokes equations for an ideal helium gas oscillating at low speeds. The current simulation results are discussed

    Stokes phenomenon and matched asymptotic expansions

    Get PDF
    This paper describes the use of matched asymptotic expansions to illuminate the description of functions exhibiting Stokes phenomenon. In particular the approach highlights the way in which the local structure and the possibility of finding Stokes multipliers explicitly depend on the behaviour of the coefficients of the relevant asymptotic expansions

    An Initial Non-Equilibrium Porous-Media Model for CFD Simulation of Stirling Regenerators

    Get PDF
    The objective of this paper is to define empirical parameters for an initial thermal non-equilibrium porous-media model for use in Computational Fluid Dynamics (CFD) codes for simulation of Stirling regenerators. The two codes currently used at Glenn Research Center for Stirling modeling are Fluent and CFD-ACE. The codes’ porous-media models are equilibrium models, which assume solid matrix and fluid are in thermal equilibrium. This is believed to be a poor assumption for Stirling regenerators; Stirling 1–D regenerator models, used in Stirling design, use non-equilibrium regenerator models and suggest regenerator matrix and gas average temperatures can differ by several degrees at a given axial location and time during the cycle. Experimentally based information was used to define: hydrodynamic dispersion, permeability, inertial coefficient, fluid effective thermal conductivity, and fluid-solid heat transfer coefficient. Solid effective thermal conductivity was also estimated. Determination of model parameters was based on planned use in a CFD model of Infinia’s Stirling Technology Demonstration Converter (TDC), which uses a random-fiber regenerator matrix. Emphasis is on use of available data to define empirical parameters needed in a thermal non-equilibrium porousmedia model for Stirling regenerator simulation. Such a model has not yet been implemented by the authors or their associates

    Multi-D CFD Modeling of Free-Piston Stirling Convertor at NASA GRC

    Get PDF
    A high efficiency Stirling Radioisotope Generator (SRG) is being developed for possible use in long duration space science missions. NASA s advanced technology goals for next generation Stirling convertors include increasing the Carnot efficiency and percent of Carnot efficiency. To help achieve these goals, a multidimensional Computational Fluid Dynamics (CFD) code is being developed to numerically model unsteady fluid flow and heat transfer phenomena of the oscillating working gas inside Stirling convertors. Simulations of the Stirling convertors for the SRG will help characterize the thermodynamic losses resulting from fluid flow and heat transfer between the working gas and solid walls. The current CFD simulation represents approximated 2-dimensional convertor geometry. The simulation solves the Navier Stokes equations for an ideal helium gas oscillating at low speeds. The current simulation results are discussed

    The SISO CSPI PDG standard for commercial off-the-shelf simulation package interoperability reference models

    Get PDF
    For many years discrete-event simulation has been used to analyze production and logistics problems in manufactur-ing and defense. Commercial-off-the-shelf Simulation Packages (CSPs), visual interactive modelling environ-ments such as Arena, Anylogic, Flexsim, Simul8, Witness, etc., support the development, experimentation and visua-lization of simulation models. There have been various attempts to create distributed simulations with these CSPs and their tools, some with the High Level Architecture (HLA). These are complex and it is quite difficult to assess how a set of models/CSP are actually interoperating. As the first in a series of standards aimed at standardizing how the HLA is used to support CSP distributed simula-tions, the Simulation Interoperability Standards Organiza-tion’s (SISO) CSP Interoperability Product Development Group (CSPI PDG) has developed and standardized a set of Interoperability Reference Models (IRM) that are in-tended to clearly identify the interoperability capabilities of CSP distributed simulations

    Semiclassical transmission across transition states

    Full text link
    It is shown that the probability of quantum-mechanical transmission across a phase space bottleneck can be compactly approximated using an operator derived from a complex Poincar\'e return map. This result uniformly incorporates tunnelling effects with classically-allowed transmission and generalises a result previously derived for a classically small region of phase space.Comment: To appear in Nonlinearit
    • …
    corecore