94 research outputs found

    Towards single-electron metrology

    Full text link
    We review the status of the understanding of single-electron transport (SET) devices with respect to their applicability in metrology. Their envisioned role as the basis of a high-precision electrical standard is outlined and is discussed in the context of other standards. The operation principles of single electron transistors, turnstiles and pumps are explained and the fundamental limits of these devices are discussed in detail. We describe the various physical mechanisms that influence the device uncertainty and review the analytical and numerical methods needed to calculate the intrinsic uncertainty and to optimise the fabrication and operation parameters. Recent experimental results are evaluated and compared with theoretical predictions. Although there are discrepancies between theory and experiments, the intrinsic uncertainty is already small enough to start preparing for the first SET-based metrological applications.Comment: 39 pages, 14 figures. Review paper to be published in International Journal of Modern Physics

    Longitudinal analysis of serum neurofilament light chain levels as marker for neuronal damage in hereditary transthyretin amyloidosis

    Get PDF
    Objective: To evaluate serum neurofilament light chain (sNfL) as biomarker of disease onset, progression and treatment effect in hereditary transthyretin (ATTRv) amyloidosis patients and TTR variant (TTRv) carriers. Methods: sNfL levels were assessed longitudinally in persistently asymptomatic TTRv carriers (N = 12), persistently asymptomatic ATTRv amyloidosis patients (defined as asymptomatic patients but with amyloid detectable in subcutaneous abdominal fat tissue) (N = 8), in TTRv carriers who developed polyneuropathy (N = 7) and in ATTRv amyloidosis patients with polyneuropathy on treatment (TTR-stabiliser (N = 20) or TTR-silencer (N = 18)). Polyneuropathy was confirmed by nerve conduction studies or quantitative sensory testing. sNfL was analysed using a single-molecule array assay. Results: sNfL increased over 2 years in persistently asymptomatic ATTRv amyloidosis patients, but did not change in persistently asymptomatic TTRv carriers. In all TTRv carriers who developed polyneuropathy, sNfL increased from 8.4 to 49.8 pg/mL before the onset of symptoms and before polyneuropathy could be confirmed neurophysiologically. In symptomatic ATTRv amyloidosis patients on a TTR-stabiliser, sNfL remained stable over 2 years. In patients on a TTR-silencer, sNfL decreased after 1 year of treatment. Conclusion: sNfL is a biomarker of early neuronal damage in ATTRv amyloidosis already before the onset of polyneuropathy. Current data support the use of sNfL in screening asymptomatic TTRv carriers and in monitoring of disease progression and treatment effect

    Doppler Versus Thermodilution-Derived Coronary Microvascular Resistance to Predict Coronary Microvascular Dysfunction in Patients with Acute Myocardial Infarction or Stable Angina Pectoris

    Get PDF
    Coronary microvascular resistance is increasingly measured as a predictor of clinical outcomes, but there is no accepted gold-standard measurement. We compared the diagnostic accuracy of two invasive indices of microvascular resistance, Doppler-derived hyperemic microvascular resistance (hMR) and thermodilution-derived index of microcirculatory resistance (IMR), at predicting microvascular dysfunction. 54 patients (61±10 years) undergoing cardiac catheterization, for stable coronary artery disease (n=10) or acute myocardial infarction (AMI, n=44), had simultaneous intracoronary pressure, Doppler flow velocity and thermodilution flow data acquired from 74 unobstructed vessels, at rest and hyperemia. Three independent measures of microvascular function were assessed, using predefined dichotomous thresholds: i) CFR, the average value of Doppler- and thermodilution-derived coronary flow reserve (CFR), and cardiovascular magnetic resonance derived: ii) Myocardial Perfusion Reserve Index (MPRI) and iii) Microvascular Obstruction (MVO). hMR correlated with IMR (rho = 0.41, p<0.0001). hMR had better diagnostic accuracy than IMR to predict CFR (area under curve, (AUC) 0.82 versus 0.58, p<0.001, sensitivity/specificity 77/77% versus 51/71%) and MPRI (AUC 0.85 versus 0.72, p=0.19, sensitivity/specificity 82/80% versus 64/75%). In AMI patients, the AUCs of hMR and IMR at predicting extensive MVO were 0.83 and 0.72 respectively (p=0.22, sensitivity/specificity 78/74% versus 44/91%). We measured two invasive indices of coronary microvascular resistance to predict multiple distinct measures of microvascular dysfunction. We found these two invasive indices only correlate modestly and so cannot be considered equivalent. In our study, the correlation between independent invasive and non-invasive measures of microvascular function was better with hMR than with IMR

    The role of ADAMTS13 in acute myocardial infarction:cause or consequence?

    Get PDF
    ADAMTS13, a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13, is a metalloprotease that cleaves von Willebrand factor (VWF). There is considerable evidence that VWF levels increase and ADAMTS13 levels decrease in ST-elevation myocardial infarction (STEMI) patients. It is unclear whether this contributes to no reflow, infarct size, and intramyocardial haemorrhage (IMH). We aimed to determine the role of ADAMTS13 in STEMI patients and to investigate the benefits of recombinant ADAMTS13 (rADAMTS13) in a porcine model of myocardial ischaemia-reperfusion. In 49 consecutive percutaneous coronary intervention (PCI)-treated STEMI patients, blood samples were collected directly after through 7 days following PCI. Cardiac magnetic resonance was performed 4-6 days after PCI to determine infarct size and IMH. In 23 Yorkshire swine, the circumflex coronary artery was occluded for 75 min. rADAMTS13 or vehicle was administered intracoronary following reperfusion. Myocardial injury and infarct characteristics were assessed using cardiac enzymes, ECG, and histopathology. In patients with IMH, VWF activity and VWF antigen were significantly elevated directly after PCI and for all subsequent measurements, and ADAMTS13 activity significantly decreased at 4 and 7 days following PCI, in comparison with patients without IMH. VWF activity and ADAMTS13 activity were not related to infarct size. In rADAMTS13-treated animals, no differences in infarct size, IMH, or formation of microthrombi were witnessed compared with controls. No correlation was found between VWF/ADAMTS13 and infarct size in patients. However, patients suffering from IMH had significantly higher VWF activity and lower ADAMTS13 activity. Intracoronary administration of rADAMTS13 did not decrease infarct size or IMH in a porcine model of myocardial ischaemia-reperfusion. These data dispute the imbalance in ADAMTS13 and VWF as the cause of no reflow

    Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status

    Get PDF
    BACKGROUND: Macrophages play a dual role in multiple sclerosis (MS) pathology. They can exert neuroprotective and growth promoting effects but also contribute to tissue damage by production of inflammatory mediators. The effector function of macrophages is determined by the way they are activated. Stimulation of monocyte-derived macrophages in vitro with interferon-γ and lipopolysaccharide results in classically activated (CA/M1) macrophages, and activation with interleukin 4 induces alternatively activated (AA/M2) macrophages. METHODS: For this study, the expression of a panel of typical M1 and M2 markers on human monocyte derived M1 and M2 macrophages was analyzed using flow cytometry. This revealed that CD40 and mannose receptor (MR) were the most distinctive markers for human M1 and M2 macrophages, respectively. Using a panel of M1 and M2 markers we next examined the activation status of macrophages/microglia in MS lesions, normal appearing white matter and healthy control samples. RESULTS: Our data show that M1 markers, including CD40, CD86, CD64 and CD32 were abundantly expressed by microglia in normal appearing white matter and by activated microglia and macrophages throughout active demyelinating MS lesions. M2 markers, such as MR and CD163 were expressed by myelin-laden macrophages in active lesions and perivascular macrophages. Double staining with anti-CD40 and anti-MR revealed that approximately 70% of the CD40-positive macrophages in MS lesions also expressed MR, indicating that the majority of infiltrating macrophages and activated microglial cells display an intermediate activation status. CONCLUSIONS: Our findings show that, although macrophages in active MS lesions predominantly display M1 characteristics, a major subset of macrophages have an intermediate activation status

    Strain analysis is superior to wall thickening in discriminating between infarcted myocardium with and without microvascular obstruction

    Get PDF
    Objectives: The aim of the present study was to evaluate the diagnostic performances of strain and wall thickening analysis in discriminating among three types of myocardium after acute myocardial infarction: non-infarcted myocardium, infarcted myocardium without microvascular obstruction (MVO) and infarcted myocardium with MVO. Methods: Seventy-one patients with a successfully treated ST-segment elevation myocardial infarction underwent cardiovascular magnetic resonance imaging at 2-6 days after reperfusion. The imaging protocol included conventional cine imaging, myocardial tissue tagging and late gadolinium enhancement. Regional circumferential and radial strain and associated strain rates were analyzed in a 16-segment model as were the absolute and relative wall thickening. Results: Hyperenhancement was detected in 418 (38%) of 1096 segments and was accompanied by MVO in 145 (35%) of hyperenhanced segments. Wall thickening, circumferential and radial strain were all significantly diminished in segments with hyperenhancement and decreased even further if MVO was also present (all p < 0.001). Peak circumferential strain (CS) surpassed all other strain and wall thickening parameters in its ability to discriminate between hyperenhanced and non-enhanced myocardium (all p < 0.05). Furthermore, CS was superior to both absolute and relative wall thickening in differentiating infarcted segments with MVO from infarcted segments without MVO (p = 0.02 and p = 0.001, respectively). Conclusions: Strain analysis is superior to wall thickening in differentiating between non-infarcted myocardium, infarcted myocardium without MVO and

    Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers

    Get PDF
    Altres ajuts: European Alzheimer DNA BioBank, EADB; EU Joint Programme, Neurodegenerative Disease Research (JPND); Neurodegeneration research program of Amsterdam Neuroscience; Stichting Alzheimer Nederland; Stichting VUmc fonds; Stichting Dioraphte; JPco-fuND FP-829-029 (ZonMW projectnumber 733051061); Dutch Federation of University Medical Centers; Dutch Government (from 2007-2011); JPND EADB grant (German Federal Ministry of Education and Research (BMBF) grant: 01ED1619A); German Research Foundation (DFG RA 1971/6-1, RA1971/7-1, RA 1971/8-1); Grifols SA; Fundación bancaria 'La Caixa'; Fundació ACE; CIBERNED; Fondo Europeo de Desarrollo Regional (FEDER-'Una manera de hacer Europa'); NIH (P30AG066444, P01AG003991); Alzheimer Research Foundation (SAO-FRA), The Research Foundation Flanders (FWO), and the University of Antwerp Research Fund. FK is supported by a BOF DOCPRO fellowship of the University of Antwerp Research Fund; Siemens Healthineers; Valdecilla Biobank (PT17/0015/0019); Academy of Finland (338182); German Center for Neurodegenerative Diseases (DZNE); German Federal Ministry of Education and Research (BMBF 01G10102, 01GI0420, 01GI0422, 01GI0423, 01GI0429, 01GI0431, 01GI0433, 04GI0434, 01GI0711); ZonMW (#73305095007); Health~Holland, Topsector Life Sciences & Health (PPP-allowance #LSHM20106); Hersenstichting; Edwin Bouw Fonds; Gieskes-Strijbisfonds; NWO Gravitation program BRAINSCAPES: A Roadmap from Neurogenetics to Neurobiology (NWO: 024.004.012); Swedish Alzheimer Foundation (AF-939988, AF-930582, AF-646061, AF-741361); Dementia Foundation (2020-04-13, 2021-04-17); Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALF 716681); Swedish Research Council (11267, 825-2012-5041, 2013-8717, 2015-02830, 2017-00639, 2019-01096); Swedish Research Council for Health, Working Life and Welfare (2001-2646, 2001-2835, 2001-2849, 2003-0234, 2004-0150, 2005-0762, 2006-0020, 2008-1229, 2008-1210, 2012-1138, 2004-0145, 2006-0596, 2008-1111, 2010-0870, 2013-1202, 2013-2300, 2013-2496); Swedish Brain Power, Hjärnfonden, Sweden (FO2016-0214, FO2018-0214, FO2019-0163); Alzheimer's Association Zenith Award (ZEN-01-3151); Alzheimer's Association Stephanie B. Overstreet Scholars (IIRG-00-2159); Alzheimer's Association (IIRG-03-6168, IIRG-09-131338); Bank of Sweden Tercentenary Foundation; Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALFGBG-81392, ALFGBG-771071); Swedish Alzheimer Foundation (AF-842471, AF-737641, AF-939825); Swedish Research Council (2019-02075); Swedish Research Council (2016-01590); BRAINSCAPES: A Roadmap from Neurogenetics to Neurobiology (024.004.012); Swedish Research Council (2018-02532); Swedish State Support for Clinical Research (ALFGBG-720931); Alzheimer Drug Discovery Foundation (ADDF), USA (201809-2016862); UK Dementia Research Institute at UCL; Swedish Research Council (#2017-00915); Alzheimer Drug Discovery Foundation (ADDF), USA (#RDAPB-201809-2016615); Swedish Alzheimer Foundation (#AF-742881); Hjärnfonden, Sweden (#FO2017-0243); Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986); National Institute of Health (NIH), USA, (#1R01AG068398-01); Alzheimer's Association 2021 Zenith Award (ZEN-21-848495); National Institutes of Health (R01AG044546, R01AG064877, RF1AG053303, R01AG058501, U01AG058922, RF1AG058501, R01AG064614); Chuck Zuckerberg Initiative (CZI).Amyloid-beta 42 (Aβ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aβ42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aβ42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    Get PDF
    Background: We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15–20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in ~ 80% of cases. Methods: We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded. Results: No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5–528.7, P = 1.1 × 10−4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR = 3.70[95%CI 1.3–8.2], P = 2.1 × 10−4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR = 19.65[95%CI 2.1–2635.4], P = 3.4 × 10−3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR = 4.40[9%CI 2.3–8.4], P = 7.7 × 10−8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD] = 43.3 [20.3] years) than the other patients (56.0 [17.3] years; P = 1.68 × 10−5). Conclusions: Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60&nbsp;years old
    corecore