178 research outputs found

    Enhancement of electroporation facilitated immunogene therapy via T-reg depletion

    Get PDF
    Regulatory T cells (T-regs) can negatively impact tumor antigen-specific immune responses after infiltration into tumor tissue. However, depletion of T-regs can facilitate enhanced anti-tumor responses, thus augmenting the potential for immunotherapies. Here we focus on treating a highly aggressive form of cancer using a murine melanoma model with a poor prognosis. We utilize a combination of T-reg depletion and immunotherapy plasmid DNA delivered into the B16F10 melanoma tumor model via electroporation. Plasmids encoding murine granulocyte macrophage colony-stimulating factor and human B71 were transfected with electroporation into the tumor and transient elimination of T-regs was achieved with CD25-depleting antibodies (PC61). The combinational treatment effectively depleted T-regs compared to the untreated tumor and significantly reduced lung metastases. The combination treatment was not effective in increasing the survival, but only effective in suppression of metastases. These results indicate the potential for combining T-reg depletion with immunotherapy-based gene electrotransfer to decrease systemic metastasis and potentially enhance survival

    Hepatic intra-arterial versus intravenous fotemustine in patients with liver metastases from uveal melanoma (EORTC 18021): a multicentric randomized trial

    Get PDF
    Despite an improved antitumor efficacy as noticed by an enhanced response rate and an improved progression-free survival, the hepatic intra-arterial fotemustine did not increase the overall survival of uveal melanoma patients with liver metastases only. We propose to consider intrahepatic treatment as an experimental approac

    Efficacy and safety of nilotinib in patients with KIT-mutated metastatic or inoperable melanoma: final results from the global, single-arm, phase II TEAM trial

    Get PDF
    Background: The single-arm, phase II Tasigna Efficacy in Advanced Melanoma (TEAM) trial evaluated the KIT-selective tyrosine kinase inhibitor nilotinib in patients with KIT-mutated advanced melanoma without prior KIT inhibitor treatment. Patients and methods: Forty-two patients with KIT-mutated advanced melanoma were enrolled and treated with nilotinib 400mg twice daily. TEAM originally included a comparator arm of dacarbazine (DTIC)-treated patients;the design was amended to a single-arm trial due to an observed low number of KIT-mutated melanomas. Thirteen patients were randomized to DTIC before the protocol amendment removing this study arm. The primary endpoint was objective response rate (ORR), determined according to Response Evaluation Criteria In Solid Tumors. Results: ORR was 26.2% (n = 11/42;95% CI, 13.9%-42.0%), sufficient to reject the null hypothesis (ORR <= 10%). All observed responses were partial responses (PRs;median response duration, 7.1 months). Twenty patients (47.6%) had stable disease and 10 (23.8%) had progressive disease;1 (2.4%) response was unknown. Ten of the 11 responding patients had exon 11 mutations, four with an L576P mutation. The median progression-free survival and overall survival were 4.2 and 18.0 months, respectively. Three of the 13 patients on DTIC achieved a PR, and another patient had a PR following switch to nilotinib. Conclusion: Nilotinib activity in patients with advanced KIT-mutated melanoma was similar to historical data from imatinib-treated patients. DTIC treatment showed potential activity, although the low patient number limits interpretation. Similar to previously reported results with imatinib, nilotinib showed greater activity among patients with an exon 11 mutation, including L576P, suggesting that nilotinib may be an effective treatment option for patients with specific KIT mutations

    The use of gamma-irradiation and ultraviolet-irradiation in the preparation of human melanoma cells for use in autologous whole-cell vaccines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human cancer vaccines incorporating autologous tumor cells carry a risk of implantation and subsequent metastasis of viable tumor cells into the patient who is being treated. Despite the fact that the melanoma cell preparations used in a recent vaccine trial (Mel37) were gamma-irradiated (200 Gy), approximately 25% of the preparations failed quality control release criteria which required that the irradiated cells incorporate <sup>3</sup>H-thymidine at no more than 5% the level seen in the non-irradiated cells. We have, therefore, investigated ultraviolet (UV)-irradiation as a possible adjunct to, or replacement for gamma-irradiation.</p> <p>Methods</p> <p>Melanoma cells were gamma- and/or UV-irradiated. <sup>3</sup>H-thymidine uptake was used to assess proliferation of the treated and untreated cells. Caspase-3 activity and DNA fragmentation were measured as indicators of apoptosis. Immunohistochemistry and Western blot analysis was used to assess antigen expression.</p> <p>Results</p> <p>UV-irradiation, either alone or in combination with gamma-irradiation, proved to be extremely effective in controlling the proliferation of melanoma cells. In contrast to gamma-irradiation, UV-irradiation was also capable of inducing significant levels of apoptosis. UV-irradiation, but not gamma-irradiation, was associated with the loss of tyrosinase expression. Neither form of radiation affected the expression of gp100, MART-1/MelanA, or S100.</p> <p>Conclusion</p> <p>These results indicate that UV-irradiation may increase the safety of autologous melanoma vaccines, although it may do so at the expense of altering the antigenic profile of the irradiated tumor cells.</p

    Complex Faraday depth structure of Active Galactic Nuclei as revealed by broadband radio polarimetry

    Full text link
    We present a detailed study of the Faraday depth structure of four bright (> 1 Jy), strongly polarized, unresolved, radio-loud quasars. The Australia Telescope Compact Array (ATCA) was used to observe these sources with 2 GHz of instantaneous bandwidth from 1.1 to 3.1 GHz. This allowed us to spectrally resolve the polarization structure of spatially unresolved radio sources, and by fitting various Faraday rotation models to the data, we conclusively demonstrate that two of the sources cannot be described by a simple rotation measure (RM) component modified by depolarization from a foreground Faraday screen. Our results have important implications for using background extragalactic radio sources as probes of the Galactic and intergalactic magneto-ionic media as we show how RM estimations from narrow-bandwidth observations can give erroneous results in the presence of multiple interfering Faraday components. We postulate that the additional RM components arise from polarized structure in the compact inner regions of the radio source itself and not from polarized emission from Galactic or intergalactic foreground regions. We further suggest that this may contribute significantly to any RM time-variability seen in RM studies on these angular scales. Follow-up, high-sensitivity VLBI observations of these sources will directly test our predictions.Comment: Accepted for publication in MNRAS. 19 pages, 15 figures, 4 table

    VEGF-A isoforms differentially regulate ATF-2-dependent VCAM-1 gene expression and endothelial-leukocyte interactions

    Get PDF
    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology. VEGF-A stimulates signal transduction pathways that modulate endothelial outputs such as cell migration, proliferation, tubulogenesis, and cell-cell interactions. Multiple VEGF-A isoforms exist, but the biological significance of this is unclear. Here we analyzed VEGF-A isoform-specific stimulation of VCAM-1 gene expression, which controls endothelial-leukocyte interactions, and show that this is dependent on both ERK1/2 and activating transcription factor-2 (ATF-2). VEGF-A isoforms showed differential ERK1/2 and p38 MAPK phosphorylation kinetics. A key feature of VEGF-A isoform-specific ERK1/2 activation and nuclear translocation was increased phosphorylation of ATF-2 on threonine residue 71 (T71). Using reverse genetics, we showed ATF-2 to be functionally required for VEGF-A-stimulated endothelial VCAM-1 gene expression. ATF-2 knockdown blocked VEGF-A-stimulated VCAM-1 expression and endothelial-leukocyte interactions. ATF-2 was also required for other endothelial cell outputs, such as cell migration and tubulogenesis. In contrast, VCAM-1 was essential only for promoting endothelial-leukocyte interactions. This work presents a new paradigm for understanding how soluble growth factor isoforms program complex cellular outputs and responses by modulating signal transduction pathways
    corecore