32 research outputs found

    Pd–Au Bimetallic Catalysts for the Hydrogenation of Muconic Acid to Bio-Adipic Acid

    Get PDF
    The hydrogenation reaction of muconic acid, produced from biomass using fermentative processes, to bio-adipic acid is one of the most appealing green emerging chemical process. This reaction can be promoted by catalysts based on a metal belonging to the platinum group, and the use of a second metal can preserve and increase their activity. Pd–Au bimetallic nanoparticle samples supported on high-temperature, heat-treated carbon nanofibers were prepared using the sol immobilization method, changing the Pd–Au molar ratio. These catalysts were characterized by TEM, STEM, and XPS analysis and tested in a batch reactor pressurized with hydrogen, where muconic acid dissolved in water was converted to adipic acid. The synthesized Pd–Au bimetallic catalysts showed higher activity than monometallic Au and Pd material and better stability during the recycling tests. Moreover, the selectivity toward the mono-unsaturated changed by decreasing the Pd/Au molar ratio: the higher the amount of gold, the higher the selectivity toward the intermediates

    Роль семьи в процессе первичной социализации в отечественной и зарубежной литературе

    Full text link
    A series of 5,15 push–pull <i>meso</i>-diarylzinc­(II) porphyrinates, carrying one or two −COOH or −COOCH<sub>3</sub> acceptor groups and a −OCH<sub>3</sub> or a −N­(CH<sub>3</sub>)<sub>2</sub> donor group, show in <i>N</i>,<i>N</i>-dimethylformamide and CHCl<sub>3</sub> solutions a negative and solvent-dependent second-order nonlinear-optical (NLO) response measured by the electric-field-induced second-harmonic generation (EFISH) technique, different from the structurally related zinc­(II) porphyrinate carrying a −N­(CH<sub>3</sub>)<sub>2</sub> donor group and a −NO<sub>2</sub> acceptor group, where a still solvent-dependent but positive EFISH second-order response was previously reported. Moreover, when a −N­(CH<sub>3</sub>)<sub>2</sub> donor group and a −COOH acceptor group are part of a sterically hindered 2,12 push–pull β-pyrrolic-substituted tetraarylzinc­(II) porphyrinate, the EFISH response is positive and solvent-independent. In order to rationalize these rather intriguing series of observations, EFISH measurements have been integrated by electronic absorption and IR spectroscopic investigations and by density functional theory (DFT) and coupled-perturbed DFT theoretical and <sup>1</sup>H pulsed-gradient spin-echo NMR investigations, which prompt that the significant concentration effects and the strong influence of the solvent nature on the NLO response are originated by a complex whole of different aggregation processes induced by the −COOH group

    Bismuth oxyhalides for NOx degradation under visible light: the role of the chloride precursor

    Get PDF
    ABSTRACT: Photocatalysis is a green technology for tackling water and air contamination. A valid alternative to the most exploited photocatalytic material, TiO2, is bismuth oxyhalides, which feature a wider bandgap energy range and use visible radiation to attain photoexcitation. Moreover, their layered structure favors the separation of photogenerated electron–hole pairs, with an enhancement in photocatalytic activity. Controlled doping of bismuth oxyhalides with metallic bismuth nanoparticles allows for further boosting of the performance of the material. In the present work, we synthesized Y%Bi-doped BiO(Cl0.875Br0.125) (Y = 0.85, 1, 2, 10) photocatalysts, using cetyltrimethylammonium bromide as the bromide source and varying the chloride source to assess the impact that both length and branching of the hydrocarbon chain might have on the framing and layering of the material. A change in the amount of the reducing agent NaBH4 allowed tuning of the percentage of metallic bismuth. After a thorough characterization (XRPD, SEM, TEM, UV-DRS, XPS), the photocatalytic activity of the catalysts was tested in the degradation of NOx under visible light, reaching a remarkable 53% conversion after 3 h of illumination for the material prepared using cetylpyridinium chloride

    Investigation on the structure and performance of supported Ni nanoparticles for the hydrogenation of furfural

    Get PDF
    In this study, nickel nanoparticles were successfully synthesized using two methods: the hot‐injection method and a room temperature colloidal synthesis using dioctyl tartrate as a capping agent. Each approach yielded Ni nanoparticles with unique morphological and electronic properties. The distinct characteristics of these Ni nanoparticles make them promising candidates for unravelling structure/activity relationships, a crucial aspect in developing catalysts with enhanced selectivity. Ni nanoparticles synthesized via these methods were supported on silica and activated charcoal, with variations in Ni loadings. We explored the impact of nanostructural characteristic of the Ni nanoparticles as well as support effects on the selective hydrogenation of furfural. Using temperature programmed reduction, advanced X‐ray absorption spectroscopy, and atom‐resolved electron microscopy techniques, we established comprehensive structure‐function relationships. We demonstrate that via dioctyl tartrate route, foam‐like Ni nanostructures are obtained, yielding higher selectivity towards selective hydrogenation than commercial Ni/Al2O3 and suppression of acid‐base catalysed acetalization and etherification. Furthermore, conversions similar to commercial Ni/Al2O3 are achieved using a lower Ni loading. These insights provide valuable guidance for the design of enhanced materials, contributing to the optimization of catalyst performance in selective hydrogenation processes. This research marks a significant step toward the development of more efficient and sustainable catalytic processes

    Second Order Nonlinear Optical Properties of 4-Styrylpyridines Axially Coordinated to A4 ZnII Porphyrins: A Comparative Experimental and Theoretical Investigation

    No full text
    In this research, two 4-styrylpyridines carrying an acceptor &ndash;NO2 (L1) or a donor &ndash;NMe2 group (L2) were axially coordinated to A4 ZnII porphyrins displaying in 5,10,15,20 meso position aryl moieties with remarkable electron withdrawing properties (pentafluorophenyl (TFP)), and with moderate to strong electron donor properties (phenyl (TPP) &lt; 3,5-di-tert-butylphenyl (TBP) &lt; bis(4-tert-butylphenyl)aniline) (TNP)). The second order nonlinear optical (NLO) properties of the resulting complexes were measured in CHCl3 solution by the Electric-Field-Induced Second Harmonic generation technique, and the quadratic hyperpolarizabilities &beta;&lambda; were compared to the Density Functional Theory (DFT)-calculated scalar quantities &beta;||. Our combined experimental and theoretical approach shows that different interactions are involved in the NLO response of L1- and L2-substituted A4 ZnII porphyrins, suggesting a role of backdonation-type mechanisms in the determination of the negative sign of Electric-Field-Induced Second Harmonic generation (EFISH) &beta;&lambda;, and a not negligible third order contribution for L1-carrying complexes

    Nonlinear Optical Properties of Porphyrin, Fullerene and Ferrocene Hybrid Materials

    No full text
    In this research, we investigated the second-order nonlinear optical (NLO) properties of multicomponent hybrid materials formed by meso-tetraphenylporphyrin P (both as free base and ZnII complex), carrying in 2 or 2,12 β-pyrrolic position an electron donor ferrocene (Fc), and/or an electron acceptor fullerene (C60) moiety, connected to the porphyrin core via an ethynyl or an ethynylphenyl spacer. We measured the NLO response by the electric-field-induced second-harmonic generation (EFISH) technique in CH2Cl2 solution with a 1907 nm incident wavelength, recording for all the investigated compounds unexpected negative values of μβ1907. Since density functional theory (DFT) calculations evidenced for P-Fc dyads almost null ground state dipole moments and very low values for P-C60 dyads and Fc-P-C60 triads, our EFISH results suggested a significant contribution to γEFISH of the purely electronic cubic term γ(−2ω; ω, ω, 0), which prevails on the quadratic dipolar orientational one μβ(−2ω; ω, ω)/5kT, as confirmed by computational evidence

    Tuning the LUMO energy of 1,10-phenanthroline in ??-diimine???dithiolate Ni(II) complex and enhancement of nonlinear optical properties

    No full text
    The synthesis, characterization, nonlinear optical properties and DFT calculations for a new Ni-diiminedithiolate complex [Ni(Cl-4-phen)(mi-5edt)] (Cl-4-phen = 3,4,7,8-tetrachloro-1,10-phenanthroline; mi-5edt = 1-(N-methylindol-5-yl)-ethene-1,2-dithiolate), are reported. The UV-Vis spectrum shows a solvatochromic absorption at 700 nm in DMF (epsilon = 5520 mol(-1) dm(3) cm(-1)) due to a charge-transfer (CT) highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) transition, typical of push-pull complexes. The CT character of this electronic transition is confirmed by DFT calculations with the HOMO mainly centered on the mi-5edt moiety and the LUMO on the Cl-4-phen ligand. By comparison with the unsubstituted analogue compound, computational studies confirm the role of the chlorination enhancing the optical properties of this complex. The second order nonlinear optical properties were measured by EFISH technique (at 1.907 mu m), giving values of -2030 and -810 x 10(-48) esu for mu beta(1.907) and mu beta(0), respectively. These values are among the highest reported so far for the class of d(8) square-planar push-pull compounds
    corecore