12 research outputs found

    Chronicle of an early demise, surname extinction in the fifteenth and the seventeenth centuries

    Get PDF
    This is the Author’s Original Manuscript of an article published by Taylor & Francis in Historical Methods: A Journal of Quantitative and Interdisciplinary History on 2018, available online: http://www.tandfonline.com/10.1080/01615440.2018.1462747It has been amply demonstrated that individuals' reproductive capability is the key explanatory phenomenon for understanding onomastic disappearance during the early modern period. This article analyzes the evolution and consequences of surname extinction in a specific population: Catalonia in the sixteenth and seventeenth centuries. In this article two aspects are examined. First, the observed disappearance of surnames is estimated through historical data collected in the Llibres d'Esposalles (Marriage Books) from 1481 to 1600 at Barcelona Cathedral. Second, the estimated natural extinction of those surnames registered in 1481 is forecast by applying a statistical branching processResearch has been funded by Projects MTM2016-76969-P (Spanish State Research Agency, AEI) and MTM2013-41383-P (Spanish Ministry of Economy, Industry and Competitiveness), both co-funded by the European Regional Development Fund (ERDF), IAP network from Belgian Science Policy. Work of J. Ameijeiras-Alonso has been supported by the Ph.D. Grant BES-2014-071006 from the Spanish Ministry of Economy, Industry and CompetitivenessNO

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Comparative analysis of cellular and tissular expression of c-fos in human keratinocytes: evidence of its role in cell differentiation

    No full text
    Recent studies on normal and pathological skin have suggested a role of the c-fos proto-oncogene in keratinocyte differentiation. To further elucidate this question we have used keratinocyte and skin culture models to study in vitro regulation of c-fos expression and attempted to correlate it with the keratinocyte maturation process. Our results show that c-fos expression is prolonged in keratinocyte monolayers both at the mRNA and protein level. Extracellular calcium which stimulate keratinocyte differentiation is able to induce c-fos expression in the presence of growth factors. However this c-fos expression cannot be maintained by these factors as seen in normal human skin in vivo. Conversely, spontaneous expression of c-fos can be seen in reconstituted skin when the neo-epidermis has completed its differentiation. All these data strongly support a role of c-fos as a switch between the early and late phases of keratinocyte differentiation allowing them to be definitively committed to their elimination process. Additionally, a differential regulation of c-fos seems to exist between keratinocyte culture and reconstituted epidermis, suggesting that tissular and serum factors are involved in the prolonged c-fos expression observed in human epidermis

    Comparative analysis of cellular and tissular expression of c-fos in human keratinocytes: evidence of its role in cell differentiation

    No full text
    Recent studies on normal and pathological skin have suggested a role of the c-fos proto-oncogene in keratinocyte differentiation. To further elucidate this question we have used keratinocyte and skin culture models to study in vitro regulation of c-fos expression and attempted to correlate it with the keratinocyte maturation process. Our results show that c-fos expression is prolonged in keratinocyte monolayers both at the mRNA and protein level. Extracellular calcium which stimulate keratinocyte differentiation is able to induce c-fos expression in the presence of growth factors. However this c-fos expression cannot be maintained by these factors as seen in normal human skin in vivo. Conversely, spontaneous expression of c-fos can be seen in reconstituted skin when the neo-epidermis has completed its differentiation. All these data strongly support a role of c-fos as a switch between the early and late phases of keratinocyte differentiation allowing them to be definitively committed to their elimination process. Additionally, a differential regulation of c-fos seems to exist between keratinocyte culture and reconstituted epidermis, suggesting that tissular and serum factors are involved in the prolonged c-fos expression observed in human epidermis

    Comparative analysis of cellular and tissular expression of c-fos in human keratinocytes: evidence of its role in cell differentiation

    No full text
    Recent studies on normal and pathological skin have suggested a role of the c-fos proto-oncogene in keratinocyte differentiation. To further elucidate this question we have used keratinocyte and skin culture models to study in vitro regulation of c-fos expression and attempted to correlate it with the keratinocyte maturation process. Our results show that c-fos expression is prolonged in keratinocyte monolayers both at the mRNA and protein level. Extracellular calcium which stimulate keratinocyte differentiation is able to induce c-fos expression in the presence of growth factors. However this c-fos expression cannot be maintained by these factors as seen in normal human skin in vivo. Conversely, spontaneous expression of c-fos can be seen in reconstituted skin when the neo-epidermis has completed its differentiation. All these data strongly support a role of c-fos as a switch between the early and late phases of keratinocyte differentiation allowing them to be definitively committed to their elimination process. Additionally, a differential regulation of c-fos seems to exist between keratinocyte culture and reconstituted epidermis, suggesting that tissular and serum factors are involved in the prolonged c-fos expression observed in human epidermis

    A novel urinary biomarker predicts 1-year mortality after discharge from intensive care

    No full text
    Rationale The urinary proteome reflects molecular drivers of disease. Objectives To construct a urinary proteomic biomarker predicting 1-year post-ICU mortality. Methods In 1243 patients, the urinary proteome was measured on ICU admission, using capillary electrophoresis coupled with mass spectrometry along with clinical variables, circulating biomarkers (BNP, hsTnT, active ADM, and NGAL), and urinary albumin. Methods included support vector modeling to construct the classifier, Cox regression, the integrated discrimination (IDI), and net reclassification (NRI) improvement, and area under the curve (AUC) to assess predictive accuracy, and Proteasix and protein-proteome interactome analyses. Measurements and main results In the discovery (deaths/survivors, 70/299) and test (175/699) datasets, the new classifier ACM128, mainly consisting of collagen fragments, yielding AUCs of 0.755 (95% CI, 0.708-0.798) and 0.688 (0.656-0.719), respectively. While accounting for study site and clinical risk factors, hazard ratios in 1243 patients were 2.41 (2.00-2.91) for ACM128 (+ 1 SD), 1.24 (1.16-1.32) for the Charlson Comorbidity Index (+ 1 point), and >= 1.19 (P = + 0.50), NRI (>= + 53.7), and AUC (>= + 0.037) over and beyond clinical risk indicators and other biomarkers. Interactome mapping, using parental proteins derived from sequenced peptides included in ACM128 and in silico predicted proteases, including/excluding urinary collagen fragments (63/35 peptides), revealed as top molecular pathways protein digestion and absorption, lysosomal activity, and apoptosis. Conclusions The urinary proteomic classifier ACM128 predicts the 1-year post-ICU mortality over and beyond clinical risk factors and other biomarkers and revealed molecular pathways potentially contributing to a fatal outcome

    A novel urinary biomarker predicts 1-year mortality after discharge from intensive care

    No full text
    Rationale The urinary proteome reflects molecular drivers of disease. Objectives To construct a urinary proteomic biomarker predicting 1-year post-ICU mortality. Methods In 1243 patients, the urinary proteome was measured on ICU admission, using capillary electrophoresis coupled with mass spectrometry along with clinical variables, circulating biomarkers (BNP, hsTnT, active ADM, and NGAL), and urinary albumin. Methods included support vector modeling to construct the classifier, Cox regression, the integrated discrimination (IDI), and net reclassification (NRI) improvement, and area under the curve (AUC) to assess predictive accuracy, and Proteasix and protein-proteome interactome analyses. Measurements and main results In the discovery (deaths/survivors, 70/299) and test (175/699) datasets, the new classifier ACM128, mainly consisting of collagen fragments, yielding AUCs of 0.755 (95% CI, 0.708-0.798) and 0.688 (0.656-0.719), respectively. While accounting for study site and clinical risk factors, hazard ratios in 1243 patients were 2.41 (2.00-2.91) for ACM128 (+ 1 SD), 1.24 (1.16-1.32) for the Charlson Comorbidity Index (+ 1 point), and >= 1.19 (P = + 0.50), NRI (>= + 53.7), and AUC (>= + 0.037) over and beyond clinical risk indicators and other biomarkers. Interactome mapping, using parental proteins derived from sequenced peptides included in ACM128 and in silico predicted proteases, including/excluding urinary collagen fragments (63/35 peptides), revealed as top molecular pathways protein digestion and absorption, lysosomal activity, and apoptosis. Conclusions The urinary proteomic classifier ACM128 predicts the 1-year post-ICU mortality over and beyond clinical risk factors and other biomarkers and revealed molecular pathways potentially contributing to a fatal outcome

    36th International Symposium on Intensive Care and Emergency Medicine : Brussels, Belgium. 15-18 March 2016.

    Get PDF

    A novel urinary biomarker predicts 1-year mortality after discharge from intensive care

    No full text
    RATIONALE: The urinary proteome reflects molecular drivers of disease. OBJECTIVES: To construct a urinary proteomic biomarker predicting 1-year post-ICU mortality. METHODS: In 1243 patients, the urinary proteome was measured on ICU admission, using capillary electrophoresis coupled with mass spectrometry along with clinical variables, circulating biomarkers (BNP, hsTnT, active ADM, and NGAL), and urinary albumin. Methods included support vector modeling to construct the classifier, Cox regression, the integrated discrimination (IDI), and net reclassification (NRI) improvement, and area under the curve (AUC) to assess predictive accuracy, and Proteasix and protein-proteome interactome analyses. MEASUREMENTS AND MAIN RESULTS: In the discovery (deaths/survivors, 70/299) and test (175/699) datasets, the new classifier ACM128, mainly consisting of collagen fragments, yielding AUCs of 0.755 (95% CI, 0.708-0.798) and 0.688 (0.656-0.719), respectively. While accounting for study site and clinical risk factors, hazard ratios in 1243 patients were 2.41 (2.00-2.91) for ACM128 (+ 1 SD), 1.24 (1.16-1.32) for the Charlson Comorbidity Index (+ 1 point), and ≥ 1.19 (P ≤ 0.022) for other biomarkers (+ 1 SD). ACM128 improved (P ≤ 0.0001) IDI (≥ + 0.50), NRI (≥ + 53.7), and AUC (≥ + 0.037) over and beyond clinical risk indicators and other biomarkers. Interactome mapping, using parental proteins derived from sequenced peptides included in ACM128 and in silico predicted proteases, including/excluding urinary collagen fragments (63/35 peptides), revealed as top molecular pathways protein digestion and absorption, lysosomal activity, and apoptosis. CONCLUSIONS: The urinary proteomic classifier ACM128 predicts the 1-year post-ICU mortality over and beyond clinical risk factors and other biomarkers and revealed molecular pathways potentially contributing to a fatal outcome.status: publishe
    corecore