229 research outputs found

    ICTV Virus Taxonomy Profile: Rhabdoviridae.

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The family Rhabdoviridae comprises viruses with negative-sense (-) single-stranded RNA genomes of 10.8-16.1 kb. Virions are typically enveloped with bullet-shaped or bacilliform morphology but can also be non-enveloped filaments. Rhabdoviruses infect plants and animals including mammals, birds, reptiles and fish, as well as arthropods which serve as single hosts or act as biological vectors for transmission to animals or plants. Rhabdoviruses include important pathogens of humans, livestock, fish and agricultural crops. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of Rhabdoviridae, which is available at www.ictv.global/report/rhabdoviridae.Production of this summary, the online chapter, and associated resources was funded by a grant from the Wellcome Trust (WT108418AIA)

    Silent circulation of arboviruses in Cameroon

    Get PDF
    Objectives: To investigate the silent circulation and transmission of arthropod-borne viruses (arboviruses) in the Fako Division of Cameroon.Design: This survey was conducted based on clinical observations and laboratory diagnosis; field collections of mosquitoes.Setting: This study was conducted in the Fako Division of South West Cameroon.Subjects: One hundred and two sera were obtained from febrile patients (with negative laboratory findings for malaria and typhoid fever) at clinics in the Fako Division, and diurnal anthropophilic mosquitoes (4,764) collected.Interventions: Virus isolation was attempted from these, and sera were screened for antibodies against 18 African arboviruses by haemagglutination inhibition (HI) and complement fixation (CF) tests.Results: No virus was isolated. Fifty three of 79 (67.1%) sera reacted with one or more viral antigens. Twenty nine sera (36.7%) reacted with members of the genus Alphavirus, with Chikungunya (CHIKV) and O’nyong-nyong (ONNV) viruses as the most frequent (34.2%). Forty six sera (58.2%) reacted with members of the genus Flavivirus: 24 (30.4%)were cross-reactive, but 11.4% reacted monotypically with Zika, 5.1% with yellow fever virus (YFV), 5.1% with dengue virus-2 (DENV-2), 2.5% with DENV-1 and 1.3% with Wesselsbron virus, respectively. The plaque reduction neutralisation test used to specify the agent that elicited the response could not resolve 33.3% of the cross reactions between CHIKV and ONNV. Neutralising antibody titres against ONNV and CHIKV were very high indicating probable re-infection.Conclusion: Our results indicate previously undetected circulation of arboviruses in Cameroon, and suggest that they are important, overlooked public health problems

    Encephalomyocarditis virus may use different pathways to initiateinfection of primary human cardiomyocytes

    Get PDF
    Encephalomyocarditis virus (EMCV) caninfect a wide range of vertebrate species including swineand non-human primates, but few data are available forhumans. We therefore wanted to gain further insight intothe mechanisms involved in EMCV infection of humancells. For this purpose, we analyzed the permissiveness ofprimary human cardiomyocytes towards two strains ofEMCV; a pig myocardial strain (B279/95) and a rat strain(1086C). In this study, we show that both strains productivelyinfect primary human cardiomyocytes and inducecomplete cytolysis. Binding and infection inhibitionexperiments indicated that attachment and infection areindependent of sialic acid and heparan sulfate for B279/95and dependent for 1086C. Sequence comparison betweenthe two strains and three-dimensional analysis of the capsidrevealed that six of the seven variable residues are surfaceexposed,suggesting a role for these amino acids in binding.Moreover, analysis of variants isolated from the 1086Cstrain revealed the importance of lysine 231 of VP1 in theattachment of EMCV to cell-surface sialic acid residues.Together, these results show a potential for EMCV strainsto use at least two different binding possibilities to initiateinfection and provide new insights into the mechanismsinvolved in primary human cell recognition by EMCV

    Negeviruses Reduce Replication of Alphaviruses during Coinfection

    Get PDF
    Negeviruses are a group of insect-specific viruses (ISVs), viruses known to infect only insects. They have been discovered over a wide geographical and species range

    Variation in RNA Virus Mutation Rates across Host Cells

    Get PDF
    It is well established that RNA viruses exhibit higher rates of spontaneous mutation than DNA viruses and microorganisms. However, their mutation rates vary amply, from 10−6 to 10−4 substitutions per nucleotide per round of copying (s/n/r) and the causes of this variability remain poorly understood. In addition to differences in intrinsic fidelity or error correction capability, viral mutation rates may be dependent on host factors. Here, we assessed the effect of the cellular environment on the rate of spontaneous mutation of the vesicular stomatitis virus (VSV), which has a broad host range and cell tropism. Luria-Delbrück fluctuation tests and sequencing showed that VSV mutated similarly in baby hamster kidney, murine embryonic fibroblasts, colon cancer, and neuroblastoma cells (approx. 10−5 s/n/r). Cell immortalization through p53 inactivation and oxygen levels (1–21%) did not have a significant impact on viral replication fidelity. This shows that previously published mutation rates can be considered reliable despite being based on a narrow and artificial set of laboratory conditions. Interestingly, we also found that VSV mutated approximately four times more slowly in various insect cells compared with mammalian cells. This may contribute to explaining the relatively slow evolution of VSV and other arthropod-borne viruses in nature

    Genetic characterization of Yug Bogdanovac virus

    Get PDF
    We present pyrosequencing data and phylogenetic analysis for the full genome of Yug Bogdanovac virus (YBV), a member of the Vesicular stomatitis virus serogroup of the Rhabdoviridae isolated from a pool of Phlebotomus perfiliewi sandflies collected in Serbia in 1976. YBV shows very low nucleotide identities to other members of the Vesicular stomatitis virus serogroup and does not contain a reading frame for C′/C proteins

    Mesoniviruses are mosquito-specific viruses with extensive geographic distribution and host range

    Get PDF
    Background: The family Mesoniviridae (order Nidovirales) comprises of a group of positive-sense, single-stranded RNA ([+]ssRNA) viruses isolated from mosquitoes. Findings. Thirteen novel insect-specific virus isolates were obtained from mosquitoes collected in Indonesia, Thailand and the USA. By electron microscopy, the virions appeared as spherical particles with a diameter of ∼50 nm. Their 20,129 nt to 20,777 nt genomes consist of positive-sense, single-stranded RNA with a poly-A tail. Four isolates from Houston, Texas, and one isolate from Java, Indonesia, were identified as variants of the species Alphamesonivirus-1 which also includes Nam Dinh virus (NDiV) from Vietnam and Cavally virus (CavV) from Côte d'Ivoire. The eight other isolates were identified as variants of three new mesoniviruses, based on genome organization and pairwise evolutionary distances: Karang Sari virus (KSaV) from Java, Bontag Baru virus (BBaV) from Java and Kalimantan, and Kamphaeng Phet virus (KPhV) from Thailand. In comparison with NDiV, the three new mesoniviruses each contained a long insertion (180 - 588 nt) of unknown function in the 5' region of ORF1a, which accounted for much of the difference in genome size. The insertions contained various short imperfect repeats and may have arisen by recombination or sequence duplication. Conclusions: In summary, based on their genome organizations and phylogenetic relationships, thirteen new viruses were identified as members of the family Mesoniviridae, order Nidovirales. Species demarcation criteria employed previously for mesoniviruses would place five of these isolates in the same species as NDiV and CavV (Alphamesonivirus-1) and the other eight isolates would represent three new mesonivirus species (Alphamesonivirus-5, Alphamesonivirus-6 and Alphamesonivirus-7). The observed spatiotemporal distribution over widespread geographic regions and broad species host range in mosquitoes suggests that mesoniviruses may be common in mosquito populations worldwide. © 2014 Vasilakis et al.; licensee BioMed Central Ltd

    Consensus statement: Virus taxonomy in the age of metagenomics

    Get PDF
    The number and diversity of viral sequences that are identified in metagenomic data far exceeds that of experimentally characterized virus isolates. In a recent workshop, a panel of experts discussed the proposal that, with appropriate quality control, viruses that are known only from metagenomic data can, and should be, incorporated into the official classification scheme of the International Committee on Taxonomy of Viruses (ICTV). Although a taxonomy that is based on metagenomic sequence data alone represents a substantial departure from the traditional reliance on phenotypic properties, the development of a robust framework for sequence-based virus taxonomy is indispensable for the comprehensive characterization of the global virome. In this Consensus Statement article, we consider the rationale for why metagenomic sequence data should, and how it can, be incorporated into the ICTV taxonomy, and present proposals that have been endorsed by the Executive Committee of the ICTV
    corecore