9 research outputs found

    Distinctive expression patterns of 185/333 genes in the purple sea urchin, Strongylocentrotus purpuratus: an unexpectedly diverse family of transcripts in response to LPS, β-1,3-glucan, and dsRNA

    Get PDF
    BACKGROUND: A diverse set of transcripts called 185/333 is strongly expressed in sea urchins responding to immune challenge. Optimal alignments of full-length 185/333 cDNAs requires the insertion of large gaps that define 25 blocks of sequence called elements. The presence or absence of individual elements also defines a specific element pattern for each message. Individual sea urchins were challenged with pathogen associated molecular patterns (PAMPs) (lipopolysaccharide, β-1,3-glucan, or double stranded RNA), and changes in the 185/333 message repertoire were followed over time. RESULTS: Each animal expressed a diverse set of 185/333 messages prior to challenge and a 0.96 kb message was the predominant size after challenge. Sequence analysis of the cloned messages indicated that the major element pattern expressed in immunoquiescent sea urchins was either C1 or E2.1. In contrast, most animals responding to lipopolysaccharide, β-1,3-glucan or injury, predominantly expressed messages of the E2 pattern. In addition to the major patterns, extensive element pattern diversity was observed among the different animals before and after challenge. Nucleotide sequence diversity of the transcripts increased in response to β-1,3-glucan, double stranded RNA and injury, whereas diversity decreased in response to LPS. CONCLUSION: These results illustrate that sea urchins appear to be able to differentiate among different PAMPs by inducing the transcription of different sets of 185/333 genes. Furthermore, animals may share a suite of 185/333 genes that are expressed in response to common pathogens, while also maintaining a large number of unique genes within the population

    The immune gene repertoire encoded in the purple sea urchin genome

    Get PDF
    Echinoderms occupy a critical and largely unexplored phylogenetic vantage point from which to infer both the early evolution of bilaterian immunity and the underpinnings of the vertebrate adaptive immune system. Here we present an initial survey of the purple sea urchin genome for genes associated with immunity. An elaborate repertoire of potential immune receptors, regulators and effectors is present, including unprecedented expansions of innate pathogen recognition genes. These include a diverse array of 222 Toll-like receptor (TLR) genes and a coordinate expansion of directly associated signaling adaptors. Notably, a subset of sea urchin TLR genes encodes receptors with structural characteristics previously identified only in protostomes. A similarly expanded set of 203 NOD/NALP-like cytoplasmic recognition proteins is present. These genes have previously been identified only in vertebrates where they are represented in much lower numbers. Genes that mediate the alternative and lectin complement pathways are described, while gene homologues of the terminal pathway are not present. We have also identified several homologues of genes that function in jawed vertebrate adaptive immunity. The most striking of these is a gene cluster with similarity to the jawed vertebrate Recombination Activating Genes 1 and 2 (RAG1/2). Sea urchins are long-lived, complex organisms and these findings reveal an innate immune system of unprecedented complexity. Whether the presumably intense selective processes that molded these gene families also gave rise to novel immune mechanisms akin to adaptive systems remains to be seen. The genome sequence provides immediate opportunities to apply the advantages of the sea urchin model toward problems in developmental and evolutionary immunobiology

    Additional Post-Concussion Impact Exposure May Affect Recovery in Adolescent Athletes.

    No full text
    Repeat concussion has been associated with risk for prolonged and pronounced clinical recovery in athletes. In this study of adolescent athletes, we examined whether an additional head impact within 24 h of a sports-related concussion (SRC) is associated with higher symptom burden and prolonged clinical recovery compared with a single-injury group. Forty-two student-athletes (52% male, mean age = 14.9 years) diagnosed with an SRC in a concussion clinic were selected for this study: (1) 21 athletes who sustained an additional significant head impact within 24 h of the initial injury (additional-impact group); (2) 21 single-injury athletes, age and gender matched, who sustained only one discrete concussive blow to the head (single-injury group). Groups did not differ on initial injury characteristics or pre-injury risk factors. The effect of injury status (single- vs. additional-impact) was examined on athlete- and parent-reported symptom burden (at first clinic visit) and length of recovery (LOR). Higher symptom burden was reported by the athletes and parents in the additional-impact group at the time of first visit. The additional-impact group also had a significantly longer LOR compared with the single-injury group. These findings provide preliminary, hypothesis-generating evidence for the importance of immediate removal from play following an SRC to protect athletes from re-injury, which may worsen symptoms and prolong recovery. The retrospective study design from a specialized clinical sample points to the need for future prospective studies of the relationship between single- and additional-impact injuries on symptom burden and LOR

    Additional Post-Concussion Impact Exposure May Affect Recovery in Adolescent Athletes

    No full text
    Repeat concussion has been associated with risk for prolonged and pronounced clinical recovery in athletes. In this study of adolescent athletes, we examined whether an additional head impact within 24 h of a sports-related concussion (SRC) is associated with higher symptom burden and prolonged clinical recovery compared with a single-injury group. Forty-two student-athletes (52% male, mean age = 14.9 years) diagnosed with an SRC in a concussion clinic were selected for this study: (1) 21 athletes who sustained an additional significant head impact within 24 h of the initial injury (additional-impact group); (2) 21 single-injury athletes, age and gender matched, who sustained only one discrete concussive blow to the head (single-injury group). Groups did not differ on initial injury characteristics or pre-injury risk factors. The effect of injury status (single- vs. additional-impact) was examined on athlete- and parent-reported symptom burden (at first clinic visit) and length of recovery (LOR). Higher symptom burden was reported by the athletes and parents in the additional-impact group at the time of first visit. The additional-impact group also had a significantly longer LOR compared with the single-injury group. These findings provide preliminary, hypothesis-generating evidence for the importance of immediate removal from play following an SRC to protect athletes from re-injury, which may worsen symptoms and prolong recovery. The retrospective study design from a specialized clinical sample points to the need for future prospective studies of the relationship between single- and additional-impact injuries on symptom burden and LOR

    The role of executive functioning in memory performance in pediatric focal epilepsy.

    No full text
    OBJECTIVE: Learning and memory are essential for academic success and everyday functioning, but the pattern of memory skills and its relationship to executive functioning in children with focal epilepsy is not fully delineated. We address a gap in the literature by examining the relationship between memory and executive functioning in a pediatric focal epilepsy population. METHODS: Seventy children with focal epilepsy and 70 typically developing children matched on age, intellectual functioning, and gender underwent neuropsychological assessment, including measures of intelligence (WASI/DAS), as well as visual (CMS Dot Locations) and verbal episodic memory (WRAML Story Memory and CVLT-C). Executive functioning was measured directly (WISC-IV Digit Span Backward; CELF-IV Recalling Sentences) and by parent report (Behavior Rating Inventory of Executive Function (BRIEF)). RESULTS: Children with focal epilepsy had lower delayed free recall scores than controls across visual and verbal memory tasks (p = 0.02; partial η(2) = .12). In contrast, recognition memory performance was similar for patients and controls (p = 0.36; partial η(2) = .03). Children with focal epilepsy demonstrated difficulties in working memory (p = 0.02; partial η(2) = .08) and planning/organization (p = 0.02) compared to controls. Working memory predicted 9–19% of the variance in delayed free recall for verbal and visual memory; organization predicted 9–10% of the variance in verbal memory. Patients with both left and right focal epilepsy demonstrated more difficulty on verbal versus visual tasks (p = 0.002). Memory performance did not differ by location of seizure foci (temporal vs. extra-temporal, frontal vs. extra-frontal). SIGNIFICANCE: Children with focal epilepsy demonstrated memory ability within age-level expectations, but delayed free recall was inefficient compared to typically developing controls. Memory difficulties were not related to general cognitive impairment or seizure localization. Executive functioning accounted for significant variance in memory performance, suggesting that poor executive control negatively influences memory retrieval

    The genome of the sea urchin Strongylocentrotus purpuratus.

    No full text
    International audienceWe report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes
    corecore