1,084 research outputs found

    A new nearby pulsar wind nebula overlapping the RX J0852.0-4622 supernova remnant

    Get PDF
    Energetic pulsars can be embedded in a nebula of relativistic leptons which is powered by the dissipation of the rotational energy of the pulsar. The object PSR J0855-4644 is an energetic and fast-spinning pulsar (Edot = 1.1x10^36 erg/s, P=65 ms) discovered near the South-East rim of the supernova remnant (SNR) RX J0852.0-4622 (aka Vela Jr) by the Parkes multibeam survey. The position of the pulsar is in spatial coincidence with an enhancement in X-rays and TeV gamma-rays, which could be due to its putative pulsar wind nebula (PWN). The purpose of this study is to search for diffuse non-thermal X-ray emission around PSR J0855-4644 to test for the presence of a PWN and to estimate the distance to the pulsar. An X-ray observation was carried out with the XMM-Newton satellite to constrain the properties of the pulsar and its nebula. The absorption column density derived in X-rays from the pulsar and from different regions of the rim of the SNR was compared with the absorption derived from the atomic (HI) and molecular (12CO) gas distribution along the corresponding lines of sight to estimate the distance of the pulsar and of the SNR. The observation has revealed the X-ray counterpart of the pulsar together with surrounding extended emission thus confirming the existence of a PWN. The comparison of column densities provided an upper limit to the distance of the pulsar PSR J0855-4644 and the SNR RX J0852.0-4622 (d<900 pc). Although both objects are at compatible distances, we rule out that the pulsar and the SNR are associated. With this revised distance, PSR J0855-4644 is the second most energetic pulsar, after the Vela pulsar, within a radius of 1 kpc and could therefore contribute to the local cosmic-ray e-/e+ spectrum.Comment: 10 pages, 9 Figures. Accepted for publication in A&

    How useful is satellite positioning system (GPS) to track gait parameters? A review.

    Get PDF
    Over the last century, numerous techniques have been developed to analyze the movement of humans while walking and running. The combined use of kinematics and kinetics methods, mainly based on high speed video analysis and forceplate, have permitted a comprehensive description of locomotion process in terms of energetics and biomechanics. While the different phases of a single gait cycle are well understood, there is an increasing interest to know how the neuro-motor system controls gait form stride to stride. Indeed, it was observed that neurodegenerative diseases and aging could impact gait stability and gait parameters steadiness. From both clinical and fundamental research perspectives, there is therefore a need to develop techniques to accurately track gait parameters stride-by-stride over a long period with minimal constraints to patients. In this context, high accuracy satellite positioning can provide an alternative tool to monitor outdoor walking. Indeed, the high-end GPS receivers provide centimeter accuracy positioning with 5-20 Hz sampling rate: this allows the stride-by-stride assessment of a number of basic gait parameters--such as walking speed, step length and step frequency--that can be tracked over several thousand consecutive strides in free-living conditions. Furthermore, long-range correlations and fractal-like pattern was observed in those time series. As compared to other classical methods, GPS seems a promising technology in the field of gait variability analysis. However, relative high complexity and expensiveness--combined with a usability which requires further improvement--remain obstacles to the full development of the GPS technology in human applications

    Improvement of walking speed prediction by accelerometry and altimetry, validated by satellite positioning

    Get PDF
    Activity monitors based on accelerometry are used to predict the speed and energy cost of walking at 0% slope, but not at other inclinations. Parallel measurements of body accelerations and altitude variation were studied to determine whether walking speed prediction could be improved. Fourteen subjects walked twice along a 1.3km circuit with substantial slope variations (−17% to +17%). The parameters recorded were body acceleration using a uni-axial accelerometer, altitude variation using differential barometry, and walking speed using satellite positioning (DGPS). Linear regressions were calculated between acceleration and walking speed, and between acceleration/altitude and walking speed. These predictive models, calculated using the data from the first circuit run, were used to predict speed during the second circuit. Finally the predicted velocity was compared with the measured one. The result was that acceleration alone failed to predict speed (meanr=0.4). Adding altitude variation improved the prediction (meanr=0.7). With regard to the altitude/acceleration-speed relationship, substantial inter-individual variation was found. It is concluded that accelerometry, combined with altitude measurement, can assess position variations of humans provided inter-individual variation is taken into account. It is also confirmed that DGPS can be used for outdoor walking speed measurements, opening up new perspectives in the field of biomechanic

    XMM-Newton observations of HESS J1813-178 reveal a composite Supernova remnant

    Get PDF
    We present X-ray and 12CO(J=1-0) observations of the very-high-energy (VHE) gamma-ray source HESS J1813-178 with the aim of understanding the origin of the gamma-ray emission. Using this dataset we are able to undertake spectral and morphological studies of the X-ray emission from this object with greater precision than previous studies. NANTEN 12CO(J=1-0) data are used to search for correlations of the gamma-ray emission with molecular clouds which could act as target material for gamma-ray production in a hadronic scenario. The NANTEN 12CO(J=1-0) observations show a giant molecular cloud of mass 2.5 10^5 M_{\sun} at a distance of 4 kpc in the vicinity of HESS J1813-178. Even though there is no direct positional coincidence, this giant cloud might have influenced the evolution of the gamma-ray source and its surroundings. The X-ray data show a highly absorbed non-thermal X-ray emitting object coincident with the previously known ASCA source AX J1813-178 showing a compact core and an extended tail towards the north-east, located in the centre of the radio shell-type Supernova remnant (SNR) G12.82-0.2. This central object shows morphological and spectral resemblance to a Pulsar Wind Nebula (PWN) and we therefore consider that the object is very likely to be a composite SNR. We discuss the scenario in which the gamma-rays originate in the shell of the SNR and the one in which they originate in the central object. We demonstrate, that in order to connect the core X-ray emission to the VHE gamma-ray emission electrons have to be accelerated to energies of at least 1 PeV.Comment: Submitted to A&

    Bleeding on oral anticoagulants: overview of reversal strategies.

    Get PDF
    Oral anticoagulants (antivitamin K, direct oral anticoagulants) are routinely prescribed for the prevention or treatment of thromboembolic events, and many patients are now on long-term anticoagulant therapy. However, this complicates the management of urgent surgical conditions or major bleeding. Various strategies have been developed to reverse the anticoagulant effect and this narrative review provides an overview of the wide range of therapies currently available

    Influenza A viruses alter the stability and antiviral contribution of host E3-ubiquitin ligase Mdm2 during the time-course of infection

    Get PDF
    International audienceThe interplay between influenza A viruses (IAV) and the p53 pathway has been reported in several studies, highlighting the antiviral contribution of p53. Here, we investigated the impact of IAV on the E3-ubiquitin ligase Mdm2, a major regulator of p53, and observed that IAV targets Mdm2, notably via its non-structural protein (NS1), therefore altering Mdm2 stability, p53/Mdm2 interaction and regulatory loop during the time-course of infection. This study also highlights a new antiviral facet of Mdm2 possibly increasing the list of its many p53-independent functions. Altogether, our work contributes to better understand the mechanisms underlining the complex interactions between IAV and the p53 pathway, for which both NS1 and Mdm2 arise as key players

    Limb salvage with isolated perfusion for soft tissue sarcoma: could less TNF-α be better?

    Get PDF
    Background: The optimal dose of TNF-α delivered by isolated limb perfusion (ILP) in patients with locally advanced soft tissue sarcoma is still unknown. Patients and methods: Randomised phase II trial comparing hyperthermic ILP (38-40°) with melphalan and one of the four assigned doses of TNF-α: 0.5 mg, 1 mg, 2 mg, and 3/4 mg upper/lower limb. The main end point was objective tumour response on MRI. Secondary end points were histological response, rate of amputation and toxicity. Resection of the remnant tumour was performed 2-3 months after ILP. The sample size was calculated assuming a linear increase of 10% in the objective response rates between each dose level group. Results: One hundred patients (25 per arm) were included. Thirteen per cent of patients had a systemic leakage with a cardiac toxicity in six patients correlated with high doses of TNF-α. Objective tumour responses were: 68%, 56%, 72% and 64% in the 0.5 mg, 1 mg, 2 mg and 3 or 4 mg arms, respectively (NS). Sixteen per cent of patients were not operated, 71% had a conservative surgery and 13% were amputated with no difference between the groups. With a median follow-up of 24 months, the 2 year overall and disease-free survival rates (95% CI) were 82% (73% to 89%) and 49% (39% to 59%), respectively. Conclusion: At the range of TNF-α doses tested, there was no dose effect detected for the objective tumour response, but systemic toxicity was significantly correlated with higher TNF-α doses. Efficacy and safety of low-dose TNF-α could greatly facilitate ILP procedures in the near futur
    corecore