65 research outputs found

    Case Studies of a MODIS-Based Potential Evapotranspiration Input to the Sacramento Soil Moisture Accounting Model

    Get PDF
    A satellite-based potential evapotranspiration (PET) estimate derived from Moderate Resolution Imaging Spectroradiometer (MODIS) observations was tested for input to the spatially lumped and gridded Sacramento Soil Moisture Accounting (SAC-SMA) model. The 15 forecast points within the National Weather Service (NWS) North Central River Forecast Center (NCRFC) forecasting region were the basis for this analysis. Through a series of case studies, the MODIS-derived PET estimate (M-PET) was evaluated for input to the SAC-SMA model by comparing streamflow simulations with those from traditional SAC-SMA evapotranspiration (ET) demand. Two prior studies have evaluated the M-PET data 1) to compute new long-term average ET demand values and 2) to input a time series (i.e., daily time-varying PET) to the NWS Hydrology Laboratory–Research Distributed Hydrologic Model (HL-RDHM), a spatially distributed version of the SAC-SMA model. This current paper presents results from a third test in which the M-PET time series is input to the lumped SAC-SMA model. In all cases, evaluation is between the M-PET data and the long-term average values used by the NWS. Similar to prior studies, results of the current analysis are mixed with improved model evaluation statistics for 4 of 15 basins tested. Of the three cases, using the time-varying M-PET as input to the distributed SAC-SMA model led to the most promising results, with model simulations that are at least as good as those when using the SAC-SMA ET demand. Analyses of the model-simulated ET suggest that the time-varying M-PET input may produce a more physically realistic representation of ET processes in both the lumped and distributed versions of the SAC-SMA model

    Evapotranspiration Estimates Derived Using Multi-Platform Remote Sensing in a Semiarid Region

    Get PDF
    Evapotranspiration (ET) is a key component of the water balance, especially in arid and semiarid regions. The current study takes advantage of spatially-distributed, near real-time information provided by satellite remote sensing to develop a regional scale ET product derived from remotely-sensed observations. ET is calculated by scaling PET estimated from Moderate Resolution Imaging Spectroradiometer (MODIS) products with downscaled soil moisture derived using the Soil Moisture Ocean Salinity (SMOS) satellite and a second order polynomial regression formula. The MODis-Soil Moisture ET (MOD-SMET) estimates are validated using four flux tower sites in southern Arizona USA, a calibrated empirical ET model, and model output from Version 2 of the North American Land Data Assimilation System (NLDAS-2). Validation against daily eddy covariance ET indicates correlations between 0.63 and 0.83 and root mean square errors (RMSE) between 40 and 96 W/m2. MOD-SMET estimates compare well to the calibrated empirical ET model, with a −0.14 difference in correlation between sites, on average. By comparison, NLDAS-2 models underestimate daily ET compared to both flux towers and MOD-SMET estimates. Our analysis shows the MOD-SMET approach to be effective for estimating ET. Because it requires limited ancillary ground-based data and no site-specific calibration, the method is applicable to regions where ground-based measurements are not available

    Distributed Hydrologic Modeling Using Satellite-Derived Potential Evapotranspiration

    Get PDF
    Satellite-derived potential evapotranspiration (PET) estimates computed from Moderate Resolution Imaging Spectroradiometer (MODIS) observations and the Priestley-Taylor formula (M-PET) are evaluated as input to the Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM). The HL-RDHM is run at a 4-km spatial and 6-h temporal resolution for 13 watersheds in the upper Mississippi and Red River basins for 2003-10. Simulated discharge using inputs of daily M-PET is evaluated for all watersheds, and simulated evapotranspiration (ET) is evaluated at two watersheds using nearby latent heat flux observations. M-PET-derived model simulations are compared to output using the long-term average PET values (default-PET) provided as part of theHL-RDHMapplication. In addition, uncalibrated and calibrated simulations are evaluated for both PET data sources. Calibrating select model parameters is found to substantially improve simulated discharge for both datasets. Overall average percent bias (PBias) and Nash-Sutcliffe efficiency (NSE) values for simulated discharge are better from the default-PET than the M-PET for the calibrated models during the verification period, indicating that the time-varying M-PET input did not improve the discharge simulation in theHL-RDHM. M-PET tends to produce higher NSE values than the default-PET for the Wisconsin and Minnesota basins, but lower NSE values for the Iowa basins. M-PET-simulated ET matches the range and variability of observed ET better than the default-PET at two sites studied and may provide potential model improvements in that regard

    The Effect of Wildfire on Soil Mercury Concentrations in Southern California Watersheds

    Get PDF
    Mercury (Hg) stored in vegetation and soils is known to be released to the atmosphere during wildfires, increasing atmospheric stores and altering terrestrial budgets. Increased erosion and transport of sediments is well-documented in burned watersheds, both immediately post-fire and as the watershed recovers; however, understanding post-fire mobilization of soil Hg within burned watersheds remains elusive. The goal of the current study is to better understand the impact of wildfire on soil-bound Hg during the immediate post-fire period as well as during recovery, in order to assess the potential for sediment-driven transport to and within surface waters in burned watersheds. Soils were collected from three southern California watersheds of similar vegetation and soil characteristics that experienced wildfire. Sampling in one of these watersheds was extended for several seasons (1.5 years) in order to investigate temporal changes in soil Hg concentrations. Laboratory analysis included bulk soil total Hg concentrations and total organic carbon of burned and unburned samples. Soils were also fractionated into a subset of grain sizes with analysis of Hg on each fraction. Low Hg concentrations were observed in surface soils immediately post-fire. Accumulation of Hg coincident with moderate vegetative recovery was observed in the burned surface soils 1 year following the fire, and mobilization was also noted during the second winter (rainy) season. Hg concentrations were highest in the fine-grained fraction of unburned soils; however, in the burned soils, the distribution of soil-bound Hg was less influenced by grain size. The accelerated accumulation of Hg observed in the burned soils, along with the elevated risk of erosion, could result in increased delivery of organic- or particulate-bound Hg to surface waters in post-fire systems

    Predicting the Impacts of Urbanization on Basin-scale Runoff and Infiltration in Semi-arid Regions

    No full text
    The current study was undertaken to improve the understanding of the long-term impacts of urbanization on hydrologic behavior and water supply in semi-arid regions. The study focuses on the Upper Santa Clara River basin in northern Los Angeles County which is undergoing rapid and extensive development. The Hydrologic Simulation Program- Fortran (HSPF) model is parameterized with land use, soil, and channel characteristics of the study watershed. Model parameters related to hydrologic processes are calibrated at the daily timestep using various spatial configurations of precipitation and parameters. Results indicate that the HSPF performs best with distributed precipitation forcing and parameters (distributed scenario), however the model performs fairly well under all scenarios. The model also shows slightly better performance during wetter seasons and years than during drier periods. Potential urbanization scenarios are generated on the basis of a regional development plan. The calibrated (and validated) model is run under the proposed development scenarios for a ten year period. Results reveal that increasing development increases total annual runoff and wet season flows, while decreases are observed in baseflow and groundwater recharge during both dry and wet seasons. As development increases, medium sized storms increase in both peak flow and overall volume, while low and high flow events (extremes) appear less affected. Urbanization is also shown to decrease recharge and, when considered at the regional-scale, could potentially result in a loss of critical water supply to southern California
    • …
    corecore