29 research outputs found

    Chronic nitrogen fertilization and carbon sequestration in grassland soils: evidence of a microbial enzyme link

    Get PDF
    Chronic nitrogen (N) fertilization can greatly affect soil carbon (C) sequestration by altering biochemical interactions between plant detritus and soil microbes. In lignin-rich forest soils, chronic N additions tend to increase soil C content partly by decreasing the activity of lignin-degrading enzymes. In cellulose-rich grassland soils it is not clear whether cellulose-degrading enzymes are also inhibited by N additions and what consequences this might have on changes in soil C content. Here we address whether chronic N fertilization has affected (1) the C content of light versus heavier soil fractions, and (2) the activity of four extracellular enzymes including the C-acquiring enzyme ÎČ-1,4-glucosidase (BG; necessary for cellulose hydrolysis). We found that 19 years of chronic N-only addition to permanent grassland have significantly increased soil C sequestration in heavy but not in light soil density fractions, and this C accrual was associated with a significant increase (and not decrease) of BG activity. Chronic N fertilization may increase BG activity because greater N availability reduces root C:N ratios thus increasing microbial demand for C, which is met by C inputs from enhanced root C pools in N-only fertilized soils. However, BG activity and total root mass strongly decreased in high pH soils under the application of lime (i.e. CaCO3), which reduced the ability of these organo-mineral soils to gain more C per units of N added. Our study is the first to show a potential ‘enzyme link’ between (1) long-term additions of inorganic N to grassland soils, and (2) the greater C content of organo-mineral soil fractions. Our new hypothesis is that the ‘enzyme link’ occurs because (a) BG activity is stimulated by increased microbial C demand relative to N under chronic fertilization, and (b) increased BG activity causes more C from roots and from microbial metabolites to accumulate and stabilize into organo-mineral C fractions. We suggest that any combination of management practices that can influence the BG ‘enzyme link’ will have far reaching implications for long-term C sequestration in grassland soils

    Increased sporulation underpins adaptation of Clostridium difficile strain 630 to a biologically–relevant faecal environment, with implications for pathogenicity

    Get PDF
    Abstract Clostridium difficile virulence is driven primarily by the processes of toxinogenesis and sporulation, however many in vitro experimental systems for studying C. difficile physiology have arguably limited relevance to the human colonic environment. We therefore created a more physiologically–relevant model of the colonic milieu to study gut pathogen biology, incorporating human faecal water (FW) into growth media and assessing the physiological effects of this on C. difficile strain 630. We identified a novel set of C. difficile–derived metabolites in culture supernatants, including hexanoyl– and pentanoyl–amino acid derivatives by LC-MSn. Growth of C. difficile strain 630 in FW media resulted in increased cell length without altering growth rate and RNA sequencing identified 889 transcripts as differentially expressed (p < 0.001). Significantly, up to 300–fold increases in the expression of sporulation–associated genes were observed in FW media–grown cells, along with reductions in motility and toxin genes’ expression. Moreover, the expression of classical stress–response genes did not change, showing that C. difficile is well–adapted to this faecal milieu. Using our novel approach we have shown that interaction with FW causes fundamental changes in C. difficile biology that will lead to increased disease transmissibility

    Soil phosphorus supply controls P nutrition strategies of beech forest ecosystems in Central Europe

    Full text link

    Evolutionary Genomics of the HAD Superfamily: Understanding the Structural Adaptations and Catalytic Diversity in a Superfamily of Phosphoesterases and Allied Enzymes

    Full text link

    Utilisation of aminomethane sulfonate by Chromohalobacter marismortui VH1

    Full text link

    Flow path dimensionality and hydrological modelling.

    No full text
    Increasingly, research is indicating that subsurface flow paths govern ion transport within river catchments. Distributed prediction of these solute flow paths in typically heterogeneous catchments must inevitably be highly uncertain without some identification of a spatial structure relating small-scale measurements of soil properties to flow predictions distributed over large catchments. To date, the evidence for profile and catenal structure within soil hydrological properties and resultant solute flow paths is not fully embraced by the hydrological community. as a consequence soil parameters are often poorly distributed within catchment-scale distributed models. This paper seeks, first, to generalize the disparate sources of evidence of parameter and flow path structure within the profile-ward and catena-ward dimensions. Second, to outline how much of this structure has been incorporated into previous hydrological simulations using distributed models, and third, to examine the physical basis of attempts to simplify parameter and flow path dimensions using pedological classifications. the available evidence suggests that a considerable number of world soils show profile-ward structure within their hydrological properties and resultant flow paths. Changes in profile-ward patterns along catenal sequences remain uncertain. the Plynlimon region of mid-Wales has been the focus for many detailed studies of solute flow paths, catchment-scale model simulations, soil property characterizations and soil classification. Comparison of these studies suggests that most model simulations and hydromorphic classifications of soil taxa fail to distinguish adequately between soil horizons and soil types with markedly different property distributions. Preliminary analysis, however, suggests that by using a catena based criterion to classify the hydromorphic characteristics of soils, soil elements with distinct patterns of properties and flow paths can be identified. This might suggest that the accuracy of distributed predictions of ion movements within river catchments could be greatly improved by the derivation of profile-specific patterns in soil properties. These profile-specific effective parameters need to be derived from measurements over a range of scales, including individual layers, profiles and complete catenas
    corecore