159 research outputs found

    Microbiological safety of cut melons sold in Portuguese retail markets: a pilot study

    Get PDF
    Due to the increasing consciousness of a healthy diet and pursuit of convenience among consumers, the market for fresh fruit is on the rise, and the melon is among the most welcome of fruits for its sensory attributes and nutritional properties. Consumption safety of cut fruit remains an issue of concern that may affect public health. This study aimed to perform the microbiological characterisation of a melon, Cucumis melo L. var. “Piel de Sapo”, cut by retailers, wrapped in plastic cling film and kept at room temperature in local fruit shops. In addition, the possible transfer of relevant foodborne pathogens, during slicing, from the peel to the interior of the melon, and bacterial growth, were also evaluated when the melon slices were stored at abusive temperatures for 2 days. In this pilot study, a low number of samples were characterised microbiologically (26 cut melons), and some isolates were identified by 16S rRNA sequencing. No Listeria spp. or Salmonella spp. were detected in any of the samples, while Escherichia coli and Staphylococcus aureus were present in four and six out of twenty-six samples, respectively. Following artificial contamination of melons with cocktails of Salmonella spp., E. coli and Listeria monocytogenes, it was observed that, despite the smaller number of L. monocytogenes recovered, all the pathogens were transferred from the contaminated peels to the interior of the melons. Furthermore, over storage time, significant differences were observed (p < 0.05) between the counts obtained from melon slices immediately after cutting (0 h), and after 24 and 48 h at 20 °C, with an increase of about 4 log CFU/g in all the pathogens. In conclusion, some cut melons classified as microbiologically unacceptable or unsatisfactory are being sold in local fruit shops in the Porto Metropolitan Area, Portugal. Although absent in the samples analysed, Salmonella spp. and L. monocytogenes, if present, can be transferred from the outside to the inside of the fruit by the cutting blade and, if not consumed immediately and stored at abusive temperatures, this ready-to-eat product poses a risk of infection. This pilot study, performed for the first time in Portugal under these conditions, clearly demonstrates the need for education campaigns to alert local sellers and consumers of the risk posed by cut melons.info:eu-repo/semantics/publishedVersio

    Photoinduced electron flow in a self-assembling supramolecular extension cable

    Full text link
    We report the design, bottom-up construction, characterization, and operation of a supramolecular system capable of mimicking the function played by a macroscopic electrical extension cable. The system is made up of a light-powered electron source, an electron drain, and a cable as the molecular components programmed to self-assemble by means of two distinct plug/socket junctions. Such connections are reversible and can be operated independently by orthogonal chemical inputs. In the source-connector-drain supermolecule, photoinduced electron transfer from source to drain occurs, and it can be switched off by dual-mode chemically controlled disassembling of the molecular components.Ferrer Ribera, RB.; Rogez, G.; Credi, A.; Ballardini, R.; Gandolfi, MT.; Balzani, V.; Liu, Y.... (2006). Photoinduced electron flow in a self-assembling supramolecular extension cable. Proceedings of the National Academy of Sciences. 103(49):18411-18416. doi:10.1073/pnas.060645910318411184161034

    Using SRAM Based FPGAs for Power-Aware High Performance Wireless Sensor Networks

    Get PDF
    While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today’s applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements

    Phytoplankton dynamics in relation to seasonal variability and upwelling and relaxation patterns at the mouth of Ria de Aveiro (West Iberian Margin) over a four-year period

    Get PDF
    From June 2004 to December 2007, samples were weekly collected at a fixed station located at the mouth of Ria de Aveiro (West Iberian Margin). We examined the seasonal and inter-annual fluctuations in composition and community structure of the phytoplankton in relation to the main environmental drivers and assessed the influence of the oceano-graphic regime, namely changes in frequency and intensity of upwelling events, over the dynamics of the phytoplankton assemblage. The samples were consistently handled and a final subset of 136 OTUs (taxa with relative abundance > 0.01%) was subsequently submitted to various multivariate analyses. The phytoplankton assemblage showed significant changes at all temporal scales but with an overriding importance of seasonality over longer-(inter-annual) or shorter-term fluctuations (upwelling-related). Sea-surface temperature, salinity and maximum upwelling index were retrieved as the main driver of seasonal change. Seasonal signal was most evident in the fluctuations of chlorophyll a concentration and in the high turnover from the winter to spring phytoplankton assemblage. The seasonal cycle of production and succession was disturbed by upwelling events known to disrupt thermal stratification and induce changes in the phytoplankton assemblage. Our results indicate that both the frequency and intensity of physical forcing were important drivers of such variability, but the outcome in terms of species composition was highly dependent on the available local pool of species and the timing of those events in relation to the seasonal cycle. We conclude that duration, frequency and intensity of upwelling events, which vary seasonally and inter-annually, are paramount for maintaining long-term phytoplankton diversity likely by allowing unstable coexistence and incorporating species turnover at different scales. Our results contribute to the understanding of the complex mechanisms of coastal phytoplankton dynamics in relation to changing physical forcing which is fundamental to improve predictability of future prospects under climate change.Portuguese Foundation for Science and Technology (FCT, Portugal) [SFRH/BPD/ 94562/2013]; FEDER funds; national funds; CESAM [UID/AMB/50017]; FCT/MEC through national funds; FEDERinfo:eu-repo/semantics/publishedVersio

    Distinguishing Type 2 Diabetes from Type 1 Diabetes in African American and Hispanic American Pediatric Patients

    Get PDF
    To test the hypothesis that clinical observations made at patient presentation can distinguish type 2 diabetes (T2D) from type 1 diabetes (T1D) in pediatric patients aged 2 to 18.Medical records of 227 African American and 112 Hispanic American pediatric patients diagnosed as T1D or T2D were examined to compare parameters in the two diseases. Age at presentation, BMI z-score, and gender were the variables used in logistic regression analysis to create models for T2D prediction.The regression-based model created from African American data had a sensitivity of 92% and a specificity of 89%; testing of a replication cohort showed 91% sensitivity and 93% specificity. A model based on the Hispanic American data showed 92% sensitivity and 90% specificity. Similarities between African American and Hispanic American patients include: (1) age at onset for both T1D and T2D decreased from the 1980s to the 2000s; (2) risk of T2D increased markedly with obesity. Racial/ethnic-specific observations included: (1) in African American patients, the proportion of females was significantly higher than that of males for T2D compared to T1D (p<0.0001); (2) in Hispanic Americans, the level of glycated hemoglobin (HbA1c) was significantly higher in T1D than in T2D (p<0.002) at presentation; (3) the strongest contributor to T2D risk was female gender in African Americans, while the strongest contributor to T2D risk was BMI z-score in Hispanic Americans.Distinction of T2D from T1D at patient presentation was possible with good sensitivity and specificity using only three easily-assessed variables: age, gender, and BMI z-score. In African American pediatric diabetes patients, gender was the strongest predictor of T2D, while in Hispanic patients, BMI z-score was the strongest predictor. This suggests that race/ethnic specific models may be useful to optimize distinction of T1D from T2D at presentation

    Facile whole mitochondrial genome resequencing from nipple aspirate fluid using MitoChip v2.0

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in the mitochondrial genome (mtgenome) have been associated with many disorders, including breast cancer. Nipple aspirate fluid (NAF) from symptomatic women could potentially serve as a minimally invasive sample for breast cancer screening by detecting somatic mutations in this biofluid. This study is aimed at 1) demonstrating the feasibility of NAF recovery from symptomatic women, 2) examining the feasibility of sequencing the entire mitochondrial genome from NAF samples, 3) cross validation of the Human mitochondrial resequencing array 2.0 (MCv2), and 4) assessing the somatic mtDNA mutation rate in benign breast diseases as a potential tool for monitoring early somatic mutations associated with breast cancer.</p> <p>Methods</p> <p>NAF and blood were obtained from women with symptomatic benign breast conditions, and we successfully assessed the mutation load in the entire mitochondrial genome of 19 of these women. DNA extracts from NAF were sequenced using the mitochondrial resequencing array MCv2 and by capillary electrophoresis (CE) methods as a quality comparison. Sequencing was performed independently at two institutions and the results compared. The germline mtDNA sequence determined using DNA isolated from the patient's blood (control) was compared to the mutations present in cellular mtDNA recovered from patient's NAF.</p> <p>Results</p> <p>From the cohort of 28 women recruited for this study, NAF was successfully recovered from 23 participants (82%). Twenty two (96%) of the women produced fluids from both breasts. Twenty NAF samples and corresponding blood were chosen for this study. Except for one NAF sample, the whole mtgenome was successfully amplified using a single primer pair, or three pairs of overlapping primers. Comparison of MCv2 data from the two institutions demonstrates 99.200% concordance. Moreover, MCv2 data was 99.999% identical to CE sequencing, indicating that MCv2 is a reliable method to rapidly sequence the entire mtgenome. Four NAF samples contained somatic mutations.</p> <p>Conclusion</p> <p>We have demonstrated that NAF is a suitable material for mtDNA sequence analysis using the rapid and reliable MCv2. Somatic mtDNA mutations present in NAF of women with benign breast diseases could potentially be used as risk factors for progression to breast cancer, but this will require a much larger study with clinical follow up.</p

    Planar Tc99m – sestamibi scintimammography should be considered cautiously in the axillary evaluation of breast cancer protocols: Results of an international multicenter trial

    Get PDF
    BACKGROUND: Lymph node status is the most important prognostic indicator in breast cancer in recently diagnosed primary lesion. As a part of an interregional protocol using scintimammography with Tc99m compounds, the value of planar Tc99m sestamibi scanning for axillary lymph node evaluation is presented. Since there is a wide range of reported values, a standardized protocol of planar imaging was performed. METHODS: One hundred and forty-nine female patients were included prospectively from different regions. Their mean age was 55.1 ± 11.9 years. Histological report was obtained from 2.987 excised lymph nodes from 150 axillas. An early planar chest image was obtained at 10 min in all patients and a delayed one in 95 patients, all images performed with 740–925 MBq dose of Tc99m sestamibi. Blind lecture of all axillary regions was interpreted by 2 independent observers considering any well defined focal area of increased uptake as an involved axilla. Diagnostic values, 95% confidence intervals [CI] and also likelihood ratios (LR) were calculated. RESULTS: Node histology demonstrated tumor involvement in 546 out of 2987 lymph nodes. Sestamibi was positive in 30 axillas (25 true-positive) and negative in 120 (only 55 true-negative). The sensitivity corresponded to 27.8% [CI = 18.9–38.2] and specificity to 91.7% [81.6–97.2]. The positive and negative LR were 3.33 and 0.79, respectively. There was no difference between early and delayed images. Sensitivity was higher in patients with palpable lesions. CONCLUSION: This work confirmed that non tomographic Tc99m sestamibi scintimammography had a very low detection rate for axillary lymph node involvement and it should not be applied for clinical assessment of breast cancer
    corecore