22 research outputs found

    Dissolution of Antarctic diatoms at low temperatures

    Get PDF
    The bSiO2 ooze of the Southern Ocean (S.O) has long provided a source of discussion over how and why such thick accumulations exist underlying a region of relatively low diatom productivity. The low temperatures and high nutrient conditions of many regions of the S.O are understood to be optimal for Fragilariopsis kerguelensis, a slow growing diatom with a high silicate (Si), yet low iron requirement, thus making it a dominant species in the surface ocean of this region. The high level of silification and robust characteristics of F.kerguelensis has been hypothesised as being a main factor contributing to its persistence in the sediments of the S.O. However, specific dissolution characteristics of this species have not previously been elucidated, nor have the effects that temperature and aggregation might have in determining the diatom composition of deep ocean sediments. Laboratory experiments tested the hypothesis that the rate of bSiO2 dissolution of aggregated F.kerguelensis is lower than that of the less silicified Chaetoceros debilis. The effects of temperature and physiological stage of the cells on the dissolution rate of freshly aggregated cells was also investigated. Four experiments were undertaken; one with F.kerguelensis at 5º C, one with senescent C.debilis at 5º C, one with senescent C.debilis at 15º C, and one with exponentially growing C.debilis at 5º C. Aggregates were formed in rolling tanks and Si dissolution monitored for 4 months. bSiO2 dissolution was significantly lower for F.kerguelensis as compared to C.debilis at 5º C. Dissolution of C.debilis aggregates formed using exponentially growing cells started with a lag period of 1 week in comparison to those formed using senescent cells, and dissolution increased markedly with temperature

    Comparison of established and emerging biodosimetry assays

    Get PDF
    Rapid biodosimetry tools are required to assist with triage in the case of a large-scale radiation incident. Here, we aimed to determine the dose-assessment accuracy of the well-established dicentric chromosome assay (DCA) and cytokinesis-block micronucleus assay (CBMN) in comparison to the emerging γ-H2AX foci and gene expression assays for triage mode biodosimetry and radiation injury assessment. Coded blood samples exposed to 10 X-ray doses (240 kVp, 1 Gy/min) of up to 6.4 Gy were sent to participants for dose estimation. Report times were documented for each laboratory and assay. The mean absolute difference (MAD) of estimated doses relative to the true doses was calculated. We also merged doses into binary dose categories of clinical relevance and examined accuracy, sensitivity and specificity of the assays. Dose estimates were reported by the first laboratories within 0.3-0.4 days of receipt of samples for the γ-H2AX and gene expression assays compared to 2.4 and 4 days for the DCA and CBMN assays, respectively. Irrespective of the assay we found a 2.5-4-fold variation of interlaboratory accuracy per assay and lowest MAD values for the DCA assay (0.16 Gy) followed by CBMN (0.34 Gy), gene expression (0.34 Gy) and γ-H2AX (0.45 Gy) foci assay. Binary categories of dose estimates could be discriminated with equal efficiency for all assays, but at doses ≥1.5 Gy a 10% decrease in efficiency was observed for the foci assay, which was still comparable to the CBMN assay. In conclusion, the DCA has been confirmed as the gold standard biodosimetry method, but in situations where speed and throughput are more important than ultimate accuracy, the emerging rapid molecular assays have the potential to become useful triage tools

    Controls on Lithium Incorporation and Isotopic Fractionation in Large Benthic Foraminifera

    Get PDF
    The lithium (Li) isotopic composition of carbonates is considered to be a reliable archive of past seawater Li isotopic compositions, which are useful as a tracer of silicate weathering. However, δ7Li values have been shown to be dependent on either pH or DIC in two studies using similar species of large, benthic foraminifera from the genus Amphistegina. To resolve this issue, we conducted culture experiments on Amphistegina lessonii in decoupled pH–DIC conditions, under two different light treatments, and with normal or Li-enriched seawater. The δ7Li values and Li/Ca ratios in the foraminifera tests were analysed by ion microprobe and LA-ICP-MS, respectively. No links between either the pH or DIC and δ7Li or Li/Ca values were observed for any of the treatments, and growth rates also did not seem to influence the Li incorporation or isotopic fractionation, contrary to observations from inorganic carbonate-precipitation experiments. Overall, these findings appear to support the use of Li isotopes in large benthic foraminifera to reconstruct past seawater chemistry and to infer changes in chemical weathering during carbon-cycle perturbations

    Laboratory intercomparison of gene expression assays.

    No full text
    The possibility of a large-scale acute radiation exposure necessitates the development of new methods that could provide rapid individual dose estimates with high sample throughput. The focus of the study was an intercomparison of laboratories' dose-assessment performances using gene expression assays. Lithium-heparinized whole blood from one healthy donor was irradiated (240 kVp, 1 Gy/min) immediately after venipuncture at approximately 37°C using single X-ray doses. Blood samples to establish calibration curves (0.25-4 Gy) as well as 10 blinded test samples (0.1-6.4 Gy) were incubated for 24 h at 37°C supplemented with an equal volume of medium and 10% fetal calf serum. For quantitative reverse transcription polymerase chain reaction (qRT-PCR), samples were lysed, stored at -20°C and shipped on ice. For the Chemical Ligation Dependent Probe Amplification methodology (CLPA), aliquots were incubated in 2 ml CLPA reaction buffer (DxTerity), mixed and shipped at room temperature. Assays were run in each laboratory according to locally established protocols. The mean absolute difference (MAD) of estimated doses relative to the true doses (in Gy) was calculated. We also merged doses into binary categories reflecting aspects of clinical/diagnostic relevance and examined accuracy, sensitivity and specificity. The earliest reported time on dose estimates was <8 h. The standard deviation of technical replicate measurements in 75% of all measurements was below 11%. MAD values of 0.3-0.5 Gy and 0.8-1.3 Gy divided the laboratories contributions into two groups. These fourfold differences in accuracy could be primarily explained by unexpected variances of the housekeeping gene (P = 0.0008) and performance differences in processing of calibration and blinded test samples by half of the contributing laboratories. Reported gene expression dose estimates aggregated into binary categories in general showed an accuracies and sensitivities of 93-100% and 76-100% for the groups, with low MAD and high MAD, respectively. In conclusion, gene expression-based dose estimates were reported quickly, and for laboratories with MAD between 0.3-0.5 Gy binary dose categories of clinical significance could be discriminated with an accuracy and sensitivity comparable to established cytogenetic assays

    Gene expression for biodosimetry and effect prediction purposes: promises, pitfalls and future directions - key session ConRad 2021.

    No full text
    PURPOSE: In a nuclear or radiological event, an early diagnostic or prognostic tool is needed to distinguish unexposed from low- and highly exposed individuals with the latter requiring early and intensive medical care. Radiation-induced gene expression (GE) changes observed within hours and days after irradiation have shown potential to serve as biomarkers for either dose reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of GE markers lies in their capability for early (1-3 days after irradiation), high-throughput, and point-of-care (POC) diagnosis required for the prediction of the acute radiation syndrome (ARS). CONCLUSIONS: As a key session of the ConRad conference in 2021, experts from different institutions were invited to provide state-of-the-art information on a range of topics including

    Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments

    Get PDF
    We studied the direct effects of CO2 and related changes in seawater carbonate chemistry on marine planktonic organisms in a mesocosm experiment. In nine outdoor enclosures (∼11 m3 each), the partial pressure of CO2 (pCO2) in the seawater was modified by an aeration system. The triplicate mesocosm treatments represented low (∼190 parts per million by volume (ppmV) CO2), present (∼410 ppmV CO2), and high (∼710 ppmV CO2) pCO2 conditions. After initial fertilization with nitrate and phosphate a bloom dominated by the coccolithophorid Emiliania huxleyi occurred simultaneously in all of the nine mesocosms; it was monitored over a 19-day period. The three CO2 treatments assimilated nitrate and phosphate similarly. The concentration of particulate constituents was highly variable among the replicate mesocosms, disguising direct CO2-related effects. Normalization of production rates within each treatment, however, indicated that the net specific growth rate of E. huxleyi, the rate of calcification per cell, and the elemental stoichiometry of uptake and production processes were sensitive to changes in pCO2. This broad influence of CO2 on the E. huxleyi bloom suggests that changes in CO2 concentration directly affect cell physiology with likely effects on the marine biogeochemistry. © 2005, by the American Society of Limnology and Oceanography, Inc.SCOPUS: ar.jFLWINinfo:eu-repo/semantics/publishe
    corecore