532 research outputs found
NASA space materials research
The effect of the space environment on: (1) thermal control coatings and thin polymer films; (2) radiation stability of 250 F and 350 F cured graphite/epoxy composites; and (3) the thermal mechanical stability of graphite/epoxy, graphite/glass composites are considered. Degradation in mechanical properties due to combined radiation and thermal cycling is highlighted. Damage mechanisms are presented and chemistry modifications to improve stability are suggested. The dimensional instabilities in graphite/epoxy composites associated with microcracking during thermal cycling is examined as well as the thermal strain hysteresis found in metal-matrix composites
Processing Internal Hard Drives - cover page
As archives receive born digital materials more and more frequently, the challenge of dealing with a variety of hardware and formats is becoming omnipresent. This paper outlines a case study that provides a practical, step-by-step guide to archiving files on legacy hard drives dating from the early 1990s to the mid-2000s. The project used a digital forensics approach to provide access to the contents of the hard drives without compromising the integrity of the files. Relying largely on open source software, the project imaged each hard drive in its entirety, then identified folders and individual files of potential high use for upload to the University of Texas Digital Repository. The project also experimented with data visualizations in order to provide researchers who would not have access to the full disk images—a sense of the contents and context of the full drives. The greatest challenge philosophically was answering the question of whether scholars should be able to view deleted materials on the drives that donors may not have realized were accessible
SOME LEGAL PROBLEMS CONNECTED WITH STOCK MARKET TRANSACTIONS
If any one were asked what was the most dramatic event of the last year, he probably refer at once to the collapse of the great Bull Market on the New York Stock Exchange. This was not only a dramatic event, but it was literally a tragedy for hundreds of thousands of people. Securities shrank to less than half their former inflated values and hundreds of millions of dollars in cash and paper profits were lost over night, or possibly we should say over two nights, for the crash occurred in two stages, one in October and one in November, and many of those who staggered through the first were annihilated by the second. Never before had so many people been involved in stock market speculation, and, consequently, never before had so many people been directly hit by any stock market panic. Never before had so many dreams of El Dorado been shattered
Agricultural Information Sources for Farmers in Lesotho, Southern Africa
The baseline survey of the Lesotho Farming Systems Research (FSR) prototype areas was a collaborative effort of the Lesotho Ministry of Agriculture (MOA) Research Division and Washington State University\u27s Farming Systems Research Project. The project\u27s thrust was adaptive on-the farm demonstrations to stimulate farmers\u27 interest and adoption
A principled approach to the measurement of situation awareness in commercial aviation
The issue of how to support situation awareness among crews of modern commercial aircraft is becoming especially important with the introduction of automation in the form of sophisticated flight management computers and expert systems designed to assist the crew. In this paper, cognitive theories are discussed that have relevance for the definition and measurement of situation awareness. These theories suggest that comprehension of the flow of events is an active process that is limited by the modularity of attention and memory constraints, but can be enhanced by expert knowledge and strategies. Three implications of this perspective for assessing and improving situation awareness are considered: (1) Scenario variations are proposed that tax awareness by placing demands on attention; (2) Experimental tasks and probes are described for assessing the cognitive processes that underlie situation awareness; and (3) The use of computer-based human performance models to augment the measures of situation awareness derived from performance data is explored. Finally, two potential example applications of the proposed assessment techniques are described, one concerning spatial awareness using wide field of view displays and the other emphasizing fault management in aircraft systems
Characterising a Si(Li) detector element for the SIXA X-ray spectrometer
The detection efficiency and response function of a Si(Li) detector element
for the SIXA spectrometer have been determined in the 500 eV to 5 keV energy
range using synchrotron radiation emitted at a bending magnet of the electron
storage ring BESSY, which is a primary radiation standard. The agreement
between the measured spectrum and the model calculation is better than 2%.
PACS: 95.55.Ka; 07.85.Nc; 29.40.Wk; 85.30.De
Keywords: Si(Li) detectors, X-ray spectrometers, detector calibration, X-ray
response, spectral lineshapeComment: 11 pages, 11 PostScript figures, uses elsart.sty, submitted to Nucl.
Instrum. Meth.
Alloy oxidation as a route to chemically active nanocomposites of gold atoms in a reducible oxide matrix
While nanoparticles are being pursued actively for a number of applications, dispersed atomic species have been explored far less in functional materials architectures, primarily because composites comprising dispersed atoms are challenging to synthesize and difficult to stabilize against sintering or coarsening. Here we show that room temperature oxidation of Au–Sn alloys produces nanostructures whose surface is terminated by a reducible amorphous oxide that contains atomically dispersed Au. Analysis of the oxidation process shows that the dispersal of Au in the oxide can be explained by predominant oxygen anion diffusion and kinetically limitedmetalmass transport, which restrict phase separation due to a preferential oxidation of Sn. Nanostructures prepared by oxidation of nanoscale Au–Sn alloys with intermediate Au content (30–50%) show high activity in a CO-oxidation probe reaction due to a cooperative mechanism involving Au atoms as sites for CO adsorption and reaction to CO2 embedded in a reducible oxide that serves as a renewable oxygen reservoir. Our results demonstrate a reliable approach toward nanocomposites involving oxide-embedded, atomically dispersed noble metal species
Alloy oxidation as a route to chemically active nanocomposites of gold atoms in a reducible oxide matrix
While nanoparticles are being pursued actively for a number of applications, dispersed atomic species have been explored far less in functional materials architectures, primarily because composites comprising dispersed atoms are challenging to synthesize and difficult to stabilize against sintering or coarsening. Here we show that room temperature oxidation of Au–Sn alloys produces nanostructures whose surface is terminated by a reducible amorphous oxide that contains atomically dispersed Au. Analysis of the oxidation process shows that the dispersal of Au in the oxide can be explained by predominant oxygen anion diffusion and kinetically limitedmetalmass transport, which restrict phase separation due to a preferential oxidation of Sn. Nanostructures prepared by oxidation of nanoscale Au–Sn alloys with intermediate Au content (30–50%) show high activity in a CO-oxidation probe reaction due to a cooperative mechanism involving Au atoms as sites for CO adsorption and reaction to CO2 embedded in a reducible oxide that serves as a renewable oxygen reservoir. Our results demonstrate a reliable approach toward nanocomposites involving oxide-embedded, atomically dispersed noble metal species
- …