178 research outputs found

    The Prevalence and Volumetry of Pituitary Cysts in Children with Growth Hormone Deficiency and Idiopathic Short Stature

    Get PDF
    Background Pituitary cysts have been speculated to cause endocrinopathies. We sought to describe the prevalence and volumetry of pituitary cysts in patients with growth hormone deficiency (GHD) and idiopathic short stature (ISS). Methods Six hundred and eighteen children evaluated for growth failure at the Division of Pediatric Endocrinology at New York Medical College between the years 2002 and 2012, who underwent GH stimulation testing and had a brain magnetic resonance imaging (MRI) prior to initiating GH treatment were randomly selected to be a part of this study. High resolution MRI was used to evaluate the pituitary gland for size and the presence of a cyst. Cyst prevalence, cyst volume and percentage of the gland occupied by the cyst (POGO) were documented. Results Fifty-six patients had a cyst, giving an overall prevalence of 9.1%. The prevalence of cysts in GHD patients compared to ISS patients was not significant (13.5% vs. 5.7%, p=0.46). Mean cyst volume was greater in GHD patients than ISS patients (62.0 mm3 vs. 29.4 mm3, p=0.01). POGO for GHD patients was significantly greater (p=0.003) than for ISS patients (15.3%+/-12.8 vs. 7.1%+/-8.0). Observers were blinded to patient groups. Conclusions GHD patients had a significantly greater volume and POGO compared to ISS patients. This raises the question of whether cysts are implicated in the pathology of growth failure

    Absence of HIV-1 Evolution in the Gut-Associated Lymphoid Tissue from Patients on Combination Antiviral Therapy Initiated during Primary Infection

    Get PDF
    Mucosal mononuclear (MMC) CCR5+CD4+ T cells of the gastrointestinal (GI) tract are selectively infected and depleted during acute HIV-1 infection. Despite early initiation of combination antiretroviral therapy (cART), gut-associated lymphoid tissue (GALT) CD4+ T cell depletion and activation persist in the majority of HIV-1 positive individuals studied. This may result from ongoing HIV-1 replication and T-cell activation despite effective cART. We hypothesized that ongoing viral replication in the GI tract during cART would result in measurable viral evolution, with divergent populations emerging over time. Subjects treated during early HIV-1 infection underwent phlebotomy and flexible sigmoidoscopy with biopsies prior to and 15–24 months post initiation of cART. At the 2nd biopsy, three GALT phenotypes were noted, characterized by high, intermediate and low levels of immune activation. A representative case from each phenotype was analyzed. Each subject had plasma HIV-1 RNA levels <50 copies/ml at 2nd GI biopsy and CD4+ T cell reconstitution in the peripheral blood. Single genome amplification of full-length HIV-1 envelope was performed for each subject pre- and post-initiation of cART in GALT and PBMC. A total of 280 confirmed single genome sequences (SGS) were analyzed for experimental cases. For each subject, maximum likelihood phylogenetic trees derived from molecular sequence data showed no evidence of evolved forms in the GALT over the study period. During treatment, HIV-1 envelope diversity in GALT-derived SGS did not increase and post-treatment GALT-derived SGS showed no substantial genetic divergence from pre-treatment sequences within transmitted groups. Similar results were obtained from PBMC-derived SGS. Our results reveal that initiation of cART during acute/early HIV-1 infection can result in the interruption of measurable viral evolution in the GALT, suggesting the absence of de-novo rounds of HIV-1 replication in this compartment during suppressive cART

    Correction: Lack of Mucosal Immune Reconstitution during Prolonged Treatment of Acute and Early HIV-1 Infection

    Get PDF
    BACKGROUND: During acute and early HIV-1 infection (AEI), up to 60% of CD4(+) T cells in the lamina propria of the lower gastrointestinal (GI) tract are lost as early as 2–4 wk after infection. Reconstitution in the peripheral blood during therapy with highly active antiretroviral therapy (HAART) is well established. However, the extent of immune reconstitution in the GI tract is unknown. METHODS AND FINDINGS: Fifty-four AEI patients and 18 uninfected control participants underwent colonic biopsy. Forty of the 54 AEI patients were followed after initiation of antiretroviral therapy (18 were studied longitudinally with sequential biopsies over a 3-y period after beginning HAART, and 22 were studied cross sectionally after 1–7 y of uninterrupted therapy). Lymphocyte subsets, markers of immune activation and memory in the peripheral blood and GI tract were determined by flow cytometry and immunohistochemistry. In situ hybridization was performed in order to identify persistent HIV-1 RNA expression. Of the patients studied, 70% maintained, on average, a 50%–60% depletion of lamina propria lymphocytes despite 1–7 y of HAART. Lymphocytes expressing CCR5 and both CCR5 and CXCR4 were persistently and preferentially depleted. Levels of immune activation in the memory cell population, CD45RO(+) HLA-DR(+), returned to levels seen in the uninfected control participants in the peripheral blood, but were elevated in the GI tract of patients with persistent CD4(+) T cell depletion despite therapy. Rare HIV-1 RNA–expressing cells were detected by in situ hybridization. CONCLUSIONS: Apparently suppressive treatment with HAART during acute and early infection does not lead to complete immune reconstitution in the GI mucosa in the majority of patients studied, despite immune reconstitution in the peripheral blood. Though the mechanism remains obscure, the data suggest that there is either viral or immune-mediated accelerated T cell destruction or, possibly, alterations in T cell homing to the GI tract. Although clinically silent over the short term, the long-term consequences of the persistence of this lesion may emerge as the HIV-1–infected population survives longer owing to the benefits of HAART

    Importin α7 Is Essential for Zygotic Genome Activation and Early Mouse Development

    Get PDF
    Importin α is involved in the nuclear import of proteins. It also contributes to spindle assembly and nuclear membrane formation, however, the underlying mechanisms are poorly understood. Here, we studied the function of importin α7 by gene targeting in mice and show that it is essential for early embryonic development. Embryos lacking importin α7 display a reduced ability for the first cleavage and arrest completely at the two-cell stage. We show that the zygotic genome activation is severely disturbed in these embryos. Our findings indicate that importin α7 is a new member of the small group of maternal effect genes

    Toll-Like Receptor Ligands Induce Human T Cell Activation and Death, a Model for HIV Pathogenesis

    Get PDF
    Background: Recently, heightened systemic translocation of microbial products was found in persons with chronic HIV infection and this was linked to immune activation and CD4 + T cell homeostasis. Methodology: We examined here the effects of microbial Toll-like receptor (TLR) ligands on T cell activation in vitro. Conclusions/Findings: We show that exposure to TLR ligands results in activation of memory and effector CD4 + and CD8 + T cells. After exposure to each of 8 different ligands that activate TLRs 2, 3, 4, 5, 7, 8, and 9, CD8 + T cells are activated and gain expression of the C type lectin CD69 that may promote their retention in lymphoid tissues. In contrast, CD4 + T cells rarely increase CD69 expression but instead enter cell cycle. Despite activation and cell cycle entry, CD4 + T cells divide poorly and instead, disproportionately undergo activation-induced cell death. Systemic exposure to TLR agonists may therefore increase immune activation, effector cell sequestration in lymphoid tissues and T cell turnover. These events may contribute to the pathogenesis of immune dysfunction and CD4+ T cell losses in chronic infection with the human immunodeficiency virus

    Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain

    Get PDF
    BACKGROUND: The complement cascade not only provides protection from infection but can also mediate destructive inflammation. Complement is also involved in elimination of neuronal synapses which is essential for proper development, but can be detrimental during aging and disease. C1q, required for several of these complement-mediated activities, is present in the neuropil, microglia, and a subset of interneurons in the brain. METHODS: To identify the source(s) of C1q in the brain, the C1qa gene was selectively inactivated in the microglia or Thy-1(+) neurons in both wild type mice and a mouse model of Alzheimer’s disease (AD), and C1q synthesis assessed by immunohistochemistry, QPCR, and western blot analysis. RESULTS: While C1q expression in the brain was unaffected after inactivation of C1qa in Thy-1(+) neurons, the brains of C1qa (FL/FL) :Cx3cr1 (CreERT2) mice in which C1qa was ablated in microglia were devoid of C1q with the exception of limited C1q in subsets of interneurons. Surprisingly, this loss of C1q occurred even in the absence of tamoxifen by 1 month of age, demonstrating that Cre activity is tamoxifen-independent in microglia in Cx3cr1 (CreERT2/WganJ) mice. C1q expression in C1qa (FL/FL) : Cx3cr1 (CreERT2/WganJ) mice continued to decline and remained almost completely absent through aging and in AD model mice. No difference in C1q was detected in the liver or kidney from C1qa (FL/FL) : Cx3cr1 (CreERT2/WganJ) mice relative to controls, and C1qa (FL/FL) : Cx3cr1 (CreERT2/WganJ) mice had minimal, if any, reduction in plasma C1q. CONCLUSIONS: Thus, microglia, but not neurons or peripheral sources, are the dominant source of C1q in the brain. While demonstrating that the Cx3cr1 (CreERT2/WganJ) deleter cannot be used for adult-induced deletion of genes in microglia, the model described here enables further investigation of physiological roles of C1q in the brain and identification of therapeutic targets for the selective control of complement-mediated activities contributing to neurodegenerative disorders. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12974-017-0814-9) contains supplementary material, which is available to authorized users

    Epizootic Emergence of Usutu Virus in Wild and Captive Birds in Germany

    Get PDF
    This study aimed to identify the causative agent of mass mortality in wild and captive birds in southwest Germany and to gather insights into the phylogenetic relationship and spatial distribution of the pathogen. Since June 2011, 223 dead birds were collected and tested for the presence of viral pathogens. Usutu virus (USUV) RNA was detected by real-time RT-PCR in 86 birds representing 6 species. The virus was isolated in cell culture from the heart of 18 Blackbirds (Turdus merula). USUV-specific antigen was demonstrated by immunohistochemistry in brain, heart, liver, and lung of infected Blackbirds. The complete polyprotein coding sequence was obtained by deep sequencing of liver and spleen samples of a dead Blackbird from Mannheim (BH65/11-02-03). Phylogenetic analysis of the German USUV strain BH65/11-02-03 revealed a close relationship with strain Vienna that caused mass mortality among birds in Austria in 2001. Wild birds from lowland river valleys in southwest Germany were mainly affected by USUV, but also birds kept in aviaries. Our data suggest that after the initial detection of USUV in German mosquitoes in 2010, the virus spread in 2011 and caused epizootics among wild and captive birds in southwest Germany. The data also indicate an increased risk of USUV infections in humans in Germany

    Model organism development and evaluation for late‐onset Alzheimer's disease: MODEL‐AD

    Get PDF
    Alzheimer's disease (AD) is a major cause of dementia, disability, and death in the elderly. Despite recent advances in our understanding of the basic biological mechanisms underlying AD, we do not know how to prevent it, nor do we have an approved disease‐modifying intervention. Both are essential to slow or stop the growth in dementia prevalence. While our current animal models of AD have provided novel insights into AD disease mechanisms, thus far, they have not been successfully used to predict the effectiveness of therapies that have moved into AD clinical trials. The Model Organism Development and Evaluation for Late‐onset Alzheimer's Disease (MODEL‐AD; www.model-ad.org) Consortium was established to maximize human datasets to identify putative variants, genes, and biomarkers for AD; to generate, characterize, and validate the next generation of mouse models of AD; and to develop a preclinical testing pipeline. MODEL‐AD is a collaboration among Indiana University (IU); The Jackson Laboratory (JAX); University of Pittsburgh School of Medicine (Pitt); Sage BioNetworks (Sage); and the University of California, Irvine (UCI) that will generate new AD modeling processes and pipelines, data resources, research results, standardized protocols, and models that will be shared through JAX's and Sage's proven dissemination pipelines with the National Institute on Aging–supported AD Centers, academic and medical research centers, research institutions, and the pharmaceutical industry worldwide
    corecore