327 research outputs found

    Photosynthate Regulation of the Root System Architecture Mediated by the Heterotrimeric G Protein Complex in Arabidopsis

    Get PDF
    Assimilate partitioning to the root system is a desirable developmental trait to control but little is known of the signaling pathway underlying partitioning. A null mutation in the gene encoding the Gβ subunit of the heterotrimeric G protein complex, a nexus for a variety of signaling pathways, confers altered sugar partitioning in roots. While fixed carbon rapidly reached the roots of wild type and agb1-2 mutant seedlings, agb1 roots had more of this fixed carbon in the form of glucose, fructose, and sucrose which manifested as a higher lateral root density. Upon glucose treatment, the agb1-2 mutant had abnormal gene expression in the root tip validated by transcriptome analysis. In addition, PIN2 membrane localization was altered in the agb1-2 mutant. The heterotrimeric G protein complex integrates photosynthesis-derived sugar signaling incorporating both membrane-and transcriptional-based mechanisms. The time constants for these signaling mechanisms are in the same range as photosynthate delivery to the root, raising the possibility that root cells are able to use changes in carbon fixation in real time to adjust growth behavior

    Genome-Wide Assessment of Efficiency and Specificity in CRISPR/Cas9 Mediated Multiple Site Targeting in Arabidopsis

    Get PDF
    Simultaneous multiplex mutation of large gene families using Cas9 has the potential to revolutionize agriculture and plant sciences. The targeting of multiple genomic sites at once raises concerns about the efficiency and specificity in targeting. The model Arabidopsis thaliana is widely used in basic plant research. Previous work has suggested that the Cas9 off-target rate in Arabidopsis is undetectable. Here we use deep sequencing on pooled plants simultaneously targeting 14 distinct genomic loci to demonstrate that multiplex targeting in Arabidopsis is highly specific to on-target sites with no detectable off-target events. In addition, chromosomal translocations are extremely rare. The high specificity of Cas9 in Arabidopsis makes this a reliable method for clean mutant generation with no need to enhance specificity or adopt alternate Cas9 variants

    Plant pathogenesis-related proteins of the cacao fungal pathogen Moniliophthora perniciosa differ in their lipid-binding specificities

    Get PDF
    Moniliophthora perniciosa is the causative agent of witches' broom disease, which devastates cacao cultures in South America. This pathogenic fungus infects meristematic tissues and derives nutrients from the plant apoplast during an unusually long-lasting biotrophic stage. In order to survive, the fungus produces proteins to suppress the plant immune response. Proteins of the Pathogenesis Related 1 (PR- 1)/CAP superfamily have been implicated in fungal virulence and immune suppression. The genome of M. perniciosa encodes eleven homologues of plant PR-1 proteins, designated MpPR-1 proteins, but their precise mode of action is poorly understood. In this study, we expressed MpPR-1 proteins in a yeast model lacking endogenous CAP proteins. We show that some members of the MpPR-1 family bind and promote secretion of sterols whereas others bind and promote secretion of fatty acids. Lipid-binding by purified MpPR-1 occurs with micromolar affinity and is saturable in vitro. Sterol binding by MpPR-1 requires the presence of a flexible loop region containing aromatic amino acids, the caveolin-binding motif. Remarkably, MpPR-1 family members that do not bind sterols can be converted to sterol binders by a single point mutation in the caveolin-binding motif. We discuss the possible implications of the lipid-binding activity of MpPR-1 family members with regard to the mode of action of these proteins during M. perniciosa infections

    An Update on Drugs Used for Lumbosacral Epidural Anesthesia and Analgesia in Dogs

    Get PDF
    This review aims to report an update on drugs administered into the epidural space for anesthesia and analgesia in dogs, describing their potential advantages and disadvantages in the clinical setting. Databases searched include Pubmed, Google scholar, and CAB abstracts. Benefits of administering local anesthetics, opioids, and alpha2 agonists into the epidural space include the use of lower doses of general anesthetics (anesthetic “sparing” effect), perioperative analgesia, and reduced side effects associated with systemic administration of drugs. However, the potential for cardiorespiratory compromise, neurotoxicity, and other adverse effects should be considered when using the epidural route of administration. When these variables are considered, the epidural technique is useful as a complementary method of anesthesia for preventive and postoperative analgesia and/or as part of a balanced anesthesia technique

    Biopolymer-based membranes associated with osteogenic growth peptide for guided bone regeneration

    Get PDF
    Barrier membranes for guided bone regeneration (GBR) mainly promote mechanical maintenance of bone defect space and induce osteopromotion. Additionally, biopolymer-based membranes may provide greater bioactivity and biocompatibility due to their similarity to extracellular matrix (ECM).In this study, biopolymers-based membranes from bacterial cellulose (BC) and collagen (COL) associated with osteogenic growth peptide (OGP(10–14)) were evaluated to determine in vitro osteoinductive potential in early osteogenesis; moreover, histological study was performed to evaluate the BC–COL OGP(10–14) membranes on bone healing after GBR in noncritical defects in rat femur. The results showed that the BC–COL and BC–COL OGP(10–14) membranes promoted cell proliferation and alkaline phosphatase activity in osteoblastic cell cultures. However, ECMmineralization was similar between cultures grown on BC OGP(10–14) and BC–COL OGP(10–14) membranes. In vivo results showed that all the membranes tested, including the peptide-free BC membrane, promoted better bone regeneration than control group. Furthermore, the BC–COL OGP(10–14) membranes induced higher radiographic density in the repaired bone than the other groups at 1, 4 and 16 weeks. Histomorpho-metric analyses revealed that the BC–COL OGP(10–14) induced higher percentage of bone tissue in the repaired area at 2 and 4 weeks than others membranes. In general, these biopolymer-based membranes might be potential candidates for bone regeneration applications

    Torque Teno Sus Virus (TTSuV) in Cell Cultures and Trypsin

    Get PDF
    Torque teno sus virus (TTSuV), a member of the family Anelloviridae, is a single-stranded, circular DNA virus, widely distributed in swine populations. Presently, two TTSuV genogroups are recognized: Torque teno sus virus 1 (TTSuV1) and Torque teno sus virus 2 (TTSuV2). TTSuV genomes have been found in commercial vaccines for swine, enzyme preparations and other drugs containing components of porcine origin. However, no studies have been made looking for TTSuV in cell cultures. In the present study, a search for TTSuV genomes was carried out in cell culture lineages, in sera used as supplement for cell culture media as well as in trypsin used for cell disaggregation. DNA obtained from twenty-five cell lineages (ten from cultures in routine multiplication and fifteen from frozen ampoules), nine samples of sera used in cell culture media and five batches of trypsin were examined for the presence of TTSuV DNA. Fifteen cell lineages, originated from thirteen different species contained amplifiable TTSuV genomes, including an ampoule with a cell lineage frozen in 1985. Three cell lineages of swine origin were co-infected with both TTSuV1 and TTSuV2. One batch of trypsin contained two distinct TTSuV1 plus one TTSuV2 genome, suggesting that this might have been the source of contamination, as supported by phylogenetic analyses of sequenced amplicons. Samples of fetal bovine and calf sera used in cell culture media did not contain amplifiable TTSuV DNA. This is the first report on the presence of TTSuV as contaminants in cell lineages. In addition, detection of the viral genome in an ampoule frozen in 1985 provides evidence that TTSuV contamination is not a recent event. These findings highlight the risks of TTSuV contamination in cell cultures, what may be source for contamination of biological products or compromise results of studies involving in vitro multiplied cells

    Effector-Triggered Immune Response in Arabidopsis thaliana Is a Quantitative Trait

    Get PDF
    We identified loci responsible for natural variation in Arabidopsis thaliana (Arabidopsis) responses to a bacterial pathogen virulence factor, HopAM1. HopAM1 is a type III effector protein secreted by the virulent Pseudomonas syringae strain Pto DC3000. Delivery of HopAM1 from disarmed Pseudomonas strains leads to local cell death, meristem chlorosis, or both, with varying intensities in different Arabidopsis accessions. These phenotypes are not associated with differences in bacterial growth restriction. We treated the two phenotypes as quantitative traits to identify host loci controlling responses to HopAM1. Genome-wide association (GWA) of 64 Arabidopsis accessions identified independent variants highly correlated with response to each phenotype. Quantitative trait locus (QTL) mapping in a recombinant inbred population between Bur-0 and Col-0 accessions revealed genetic linkage to regions distinct from the top GWA hits. Two major QTL associated with HopAM1-induced cell death were also associated with HopAM1-induced chlorosis. HopAM1-induced changes in Arabidopsis gene expression showed that rapid HopAM1-dependent cell death in Bur-0 is correlated with effector-triggered immune responses. Studies of the effect of mutations in known plant immune system genes showed, surprisingly, that both cell death and chlorosis phenotypes are enhanced by loss of EDS1, a regulatory hub in the plant immune-signaling network. Our results reveal complex genetic architecture for response to this particular type III virulence effector, in contrast to the typical monogenic control of cell death and disease resistance triggered by most type III effectors

    The European Registered Toxicologist (ERT) : Current status and prospects for advancement

    Get PDF
    Acknowledgements We would like to thank the participants of the five workshops in which the issues presented in this paper were discussed and the revised guidelines prepared, as well as the EUROTOX Executive Committee and the societies of toxicology of Sweden, the Netherlands, Switzerland, Austria and France for their support which allowed the workshops to take place.Peer reviewedPostprin

    Encapsulation of Nanostructures in a Dielectric Matrix Providing Optical Enhancement in Ultrathin Solar Cells

    Get PDF
    The incorporation of nanostructures in optoelectronic devices for enhancing their optical performance is widely studied. However, several problems related to the processing complexity and the low performance of the nanostructures have hindered such actions in real-life devices. Herein, a novel way of introducing gold nanoparticles in a solar cell structure is proposed in which the nanostructures are encapsulated with a dielectric layer, shielding them from high temperatures and harsh growth processing conditions of the remaining device. Through optical simulations, an enhancement of the effective optical path length of approximately four times the nominal thickness of the absorber layer is verified with the new architecture. Furthermore, the proposed concept in a Cu(In,Ga)Se2 solar cell device is demonstrated, where the short-circuit current density is increased by 17.4%. The novel structure presented in this work is achieved by combining a bottom-up chemical approach of depositing the nanostructures with a top-down photolithographic process, which allows for an electrical contact.This work was funded in part by the Fundação para a Ciência e a Tecnologia (FCT) under Grants IF/00133/2015, PD/BD/142780/2018 and SFRH/BD/ 146776/2019. The authors also want to acknowledge the European Union’s Horizon 2020 Research and Innovation Programme through the ARCIGS-M project under Grant 720887, the Special Research Fund (BOF) of Hasselt University, the FCT through the project NovaCell (PTDC/CTM-CTM/28075/ 2017), and InovSolarCells (PTDC/FISMAC/29696/2017) co-funded by FCT and the ERDF through COMPETE2020. The authors also want to acknowledge Sandra Maya for the production of images used in this work.info:eu-repo/semantics/publishedVersio
    corecore