33 research outputs found

    Analysis of N-nitrosodiprophylamines Carcinogenic Compound in Meat-Processing using Headspace-Single Drop Microextraction-Gas Chromatography-Flame Ionization Detector (HS-SDME-GC-FID)

    Get PDF
    Analysis of N-nitrosodiprophylamines carcinogenic compound in processed meat especially hamburger and kebab had occured by HS-SDME-GC-FID technique. The results were obtained determining the optimum pH was 4, the optimum stirring speed was 6 scale, and the temperature of extraction was 30 ºC. It was obtained in this study that the detection limit of 78 ppb, the percent recovery of 101,18%, precision between 0,089% to 0,566%, and the true enrichment factor was 3372,66 times. From the results of the study was concluded that HS-SDME-GC-FID technique can be used to analyze the carcinogenic compound N-nitrosodiprophylamines (NDPA) found in meat-processing (hamburger and kebab) by the concentration of each samples as follows, hamburger I of 0,27 ppm, hamburger II of 0,73 ppm, hamburger III of 1,39 ppm, and kebab I of 3,13 pp

    Toksisitas Senyawa Tembaga(II)Klorida Dihidrat Terhadap Sel Kanker Payudara T74D Secara in vitro

    Get PDF
    Cancer is a transformation of normal cells in the body into malignancy due to the induction of carcinogens. Breast cancer is the second leading cause of death in Indonesia. The field of treatment with inorganic compounds has been widely developed and shows better anticancer activity than organic compounds. This research aims to know the toxicity level of copper value of 29.021 μg/ml. The value of IC 50 obtained <100 μg/ml so that the copperCancer is a transformation of normal cells in the body into malignancy due to the induction ofcarcinogens. Breast cancer is the second leading cause of death in Indonesia. The field oftreatment with inorganic compounds has been widely developed and shows better anticanceractivity than organic compounds. This research aims to know the toxicity level ofcoppervalue of 29.021 μg/ml. The value of IC50obtained<100 μg/ml so that the coppe

    RNA Isolation of Dengue Virus Type 1 with Different Precipitation Solvents : Dimethyl Sulfoxide, Acetone, and Ethanol 70%

    Get PDF
    Dengue Hemorrhagic Fever (DHF) is caused by dengue viruses that belong to Flaviviridae. The disease is known to be caused by 4 types of dengue viruses, namely DENV-1, DENV-2, DENV-3, and DENV-4 associated with antigenic. Dengue virus is a virus RNA that causes illness with clinical manifestations of Dengue Fever, Dengue Hemorrhagic Fever and Dengue Shock Syndrome. The aim of research was to determine the effectiveness of dimethyl sulfoxide, acetone, and ethanol 70% as precipitation solvent in the process of RNA isolation. The method used was Reverse Transcription - Polymerase Chain Reaction (RT-PCR) and Polymerase Chain Reaction (PCR) with specific primers for dengue virus type 1 (DENV-1). RNA isolation can be done easily using an RNA Isolation Kit. Use of RNA Isolation Kit results in a purer RNA isolate from contaminants and from RNA degradation. In generally the isolation is using cold ethanol / alcohol with concentration 90-95%. Ethanol / Alcohol does not dissolve RNA and light density of alcohol lighter than water makes RNA rise and hover on the surface. In RNA isolation solvent precipitation that used are acetone, ethanol 70%, and DMSO. In qualitative RNA measurements using agarose gel electrophoresis and was examined under the UV light-illuminator and quantitative RNA measurements using Nanodrop spectrophotometry with absorbance ratio at 260/280 and 260/230 showed a good result indicated by the appearance of the band on electrophoresis results in PCR. While the measurement quantitatively is showed that there was still protein contamination but the results are quite good because it does not much different from the ratio set in the reference. Acetone, ethanol 70%, and DMSO can be used as a substitute of 96% ethanol in the process of RNA isolation in DENV-1 virus and can also be applied to other dengue virus because the structure of the 4th antigen serotype is very similar one with the other and no effect

    Detection of Knockdown-Resistance Mutations (V1016G and F1534C) in Dengue Vector from Urban Park, Surabaya, Indonesia

    Get PDF
    An urban park is potentially a source of vector-borne disease transmission due to it being a natural and artificial mosquito breeding habitats combined with people's continuous presence. Thus, this study aims to screen the occurrence of knockdown-resistance (kdr) mutant alleles (V1016G and F1534C) in mosquito populations collected from urban parks in Surabaya, Indonesia. Cross sectional study was conducted in July 2019. A total of 28 ovitraps were installed in seven urban parks, having four ovitraps installed in each park. In total, 1,662 eggs were collected, and only 187 emerged into adult mosquitoes, consisting of 97 Aedes (Stegomyia) aegypti and 90 Aedes (Stegomyia) albopictus. All-female adult mosquitoes (n=55) were tested using allele-specific polymerase chain reaction assay (AS-PCR) to detect voltage gated sodium channel (VGSC) gene mutations. This study found no mutations in Valine to Glysine mutation in point 1016 (V1016G) and Phenylalanine to Cysteine in point 1534 (F1534C) alleles in both two species. All of mosquito samples have wild type genotype of kdr alleles (V1016V and F1534F). Data were analysed using R Studio 1.4 Version by Genetics package. Results showed that the frequency of resistant alleles (G1016 and C1534) was zero, and the frequency of susceptible allele was 1 (V1016 and F1534). Insecticide bioassay could not be established due to the limited number of adult mosquitoes, so insecticide resistance status could not be determined. However, this study can be used as preliminary monitoring for the vector control program

    In Vitro Study: Effect of Cobalt(II) Chloride Against Dengue Virus Type 1 in Vero Cells

    Get PDF
    Dengue virus (DENV) serotypes DENV-1 to DENV-4 are enveloped viruses that belong to the genus Flavivirus of the Flaviviridae. Dengue vaccine or antiviral has not yet been clinically approved for humans, even though there have been great efforts toward this end. Antiviral activity against DENV is needed to develop to be an alternative drug for DENV virus. Cobalt(II) chloride have been used in the treatment and prevention of diseases of humans since ancient times. The aim of this study is to investigate the antiviral effects and Cytotoxicity of Cobalt(II) chloride. This compound was further investigated for its inhibitory effect on the replication of DENV-1 in Vero cells. Antiviral activity and Cytotoxicity measured by WST-1 assay. The IC50 value of the Cobalt(II) chloride for DENV-1 was 0.38 μg/ml. The cytotoxicity of Cobalt(II) chloride to Vero cell suggest that the CC50 value was 2.91 µg/ml The results of this study demonstrate the anti-dengue serotype 1 inhibitory activity of Cobalt(II) chloride was a high toxic compound

    A NEW COPPER (II)-IMIDAZOLE DERIVATIVE EFFECTIVELY INHIBITS REPLICATION OF DENV-2 IN VERO CELL

    Get PDF
    Background: Dengue is a kind of infectious disease that was distributed in the tropical and sub-tropical areas. To date, there is no clinically approved dengue vaccine or antiviral for humans, even though there have been great efforts towards this end. Therefore, finding the effective compound against dengue virus (DENV) replication is very important. Among the complex compounds, copper(II)-imidazole derivatives are of interest because of their biological and medicinal benefits. Materials and Methods: In the present study, antiviral activity of [Cu(2,4,5-triphenylimidazole)2]n, was evaluated against different stages of dengue virus type 2 (DENV-2) replication in Vero cell using focus forming unit reduction assay and quantitative ELISA. Results: [Cu(2,4,5-triphenylimidazole)2]n inhibited DENV-2 replication in Vero cells with IC50 = 2.3 μg/ml and SI= 19.42 when cells were treated 2 days after virus infection, whereas its CC50 for cytotoxicity to Vero cells was 44.174 μg/ml. Conclusion: The compound has high anti-DENV2 activity, less toxicity, and a high possibility to be considered a drug candidate

    INHIBITORY ACTIVITY OF COBALT(II)–MORIN COMPLEX AGAINST THE REPLICATION OF DENGUE VIRUS TYPE 2

    Get PDF
    Dengue virus (DENV) is a significant pathogen emerging worldwide as a cause of infectious disease. Antidengue treatments are urgently required to control the emergence of dengue. DENV is a mosquito-borne disease responsible for acute systemic diseases and serious health conditions. DENVs were distributed in the tropical and sub-tropical areas and transmitted to humans by Aedes agypty and Aedes albopictus. Dengue vaccine or antiviral has not yet been clinically approved for humans, even though there have been great efforts toward this end. Antiviral activity against DENV is an important alternative for the characterization and development of drugs. Metal–organic compounds were reported to exhibit fungicidal, bactericidal, and antiviral activities its inhibitory activity was not significant, at high concentration it was more toxic to replicating cells than to stationary cell monolayers of Vero cells. The aim of this study is to investigate the antiviral effects of Cobalt(II)–Morin complex. This compound was further investigated for its inhibitory effect on the replication of DENV-2 in Vero cells. The replication of DENV was measured by enzyme-linked immunosorbent assay and the value of selectivity index (SI). SI was determined as the ratio of the 50% cytotoxic concentration (CC50) to the 50% inhibitory concentration (IC50). The IC50 value of the Cobalt(II)–Morin complex for DENV-2 was 3.08 µg/ml, and the CC50 value of the complex for Vero cells was 3.36 µg/ml; thus, the SI value was 1.09. The results of this study demonstrate the antidengue serotype 2 inhibitory activity of Cobalt(II)–Morin complex and its high toxicity in Vero cells. Further studies are not required before Co(II)–Morin can be applied in the treatment of DENV-2 infections

    Bioactive compounds screening of Rafflesia sp. and Sapria sp. (Family: Rafflesiaceae) as anti-SARS-CoV-2 via tetra inhibitors: An in silico research

    Get PDF
    Context: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread, causing a global pandemic with diverse symptoms and increased risk of mortality. Various symptoms and comorbidities contribute to a higher likelihood of death in patients. Additionally, existing antiviral drugs have shown incomplete efficacy. Rafflesia sp. and Sapria sp. are parasitic plants with potential medical applications as anti-SARS-CoV-2 agents. Aims: To evaluate the bioactive compounds derived from Rafflesia sp. and Sapria sp. as dual inhibitors against SARS-CoV-2. Methods: Ligand samples were obtained from the PubChem database. Target proteins essential for SARS-CoV-2 entry were obtained from the RCSB PDB. The antiviral potential of the bioactive compounds was evaluated using the Pass Online webserver. The bioactivity and inhibitory potential of selected ligands were analyzed using the SwissADME and Molinspiration web servers. In addition, a specific docking method was performed using PyRx software to determine binding activity and molecular interactions. Results: Computational analysis revealed that leucoanthocyanidin, ellagic acid, and catechin functioned as dual inhibitors, targeting angiotensin-converting enzyme 2 (ACE2), transmembrane protease serine 2 (TMPRSS2), furin, and cathepsin L for antiviral activity. However, valrubicin and diminazene, serving as control drugs for ACE2 and furin, respectively, demonstrated the most effective results through this mechanism. Further studies are required to validate these findings. Conclusions: The combination of bioactive compounds derived from Rafflesia sp. and Sapria sp. shows potential antiviral activity through a dual inhibitor mechanism involving leucoanthocyanidin, ellagic acid, and catechin, which target SARS-CoV-2 proteins, namely ACE2, TMPRSS2, furin, and cathepsin L

    Novel Antiviral Investigation of Annona squamosa Leaf Extract against the Dengue Virus Type-2: In vitro Study

    Get PDF
    Introduction: Dengue virus (DENV) infection is general mosquito-transmitted viral taint. It can lead to the dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). Dengue is a solemn illness with no endowed antiviral medication or recognized vaccine. Therefore, we aimed to investigate the activity of Annona squamosa leaf extract (ASLE) against dengue virus type-2 (DENV-2) isolated from Surabaya, Indonesia in 2013 (NCBI accession number: KT012509). Methods: In this study, the antiviral activity of ASLE was evaluated against DENV- 2 in Vero cells using Viral ToxGlo™ Assay. In addition, we used CellTiter-Glo® Luminescent Cell Viability Assay to set the amount of viable cells in culture based on quantitation of the ATP. Results: DENV-2 replication inhibited by ASLE in Vero cells with IC50 = 73.78 μg/mL and SI = 4.49 when cells were treated two days after virus infection, whereas its CC50 for cytotoxicity to Vero cells was 331.54 μg/mL. Interestingly, this is the first report on the investigation of ASLE against DENV-2. Conclusion: In summary, ASLE demonstrated the antiviral activity against DENV-2 with less toxicity, and high possibility as a drug candidate. Therefore, it might be suggested for in vivo assessment in the progress of a potent antiviral against DENV-2

    Garcinoxanthones from Garcinia mangostana L. against SARS-CoV-2 infection and cytokine storm pathway inhibition: A viroinformatics study

    Get PDF
    Context: Mangosteen (Garcinia mangostana L.) is used in traditional medicine as an antibacterial, antioxidant, and anti-inflammatory. Aims: To determine the molecular mechanism and potential of garciniaxanthone derivate compounds from G. mangostana as SARS-CoV-2 antiviral and prevent cytokine storm through in silico approach. Methods: Ligand and protein samples were obtained from databases such as PubChem and Protein Databank, then drug-likeness analysis using Lipinski, Ghose, Veber, Egan, and Muege rules on SwissADME server, prediction of antiviral probability through PASSOnline server. Furthermore, molecular docking simulation with PyRx v1.0 software (Scripps Research, USA) with an academic license, identification of interactions and chemical bond positions of ligands on the target by PoseView server, 3D visualization of PyMOLv.2.5.2 software (Schrödinger, Inc., USA) with an academic license, molecular dynamics simulation for molecular stability prediction by CABS-flex v2.0 server, target prediction of antiviral candidate compounds by SwissTargetPrediction server, pathway analysis through STRING v11.5 database, and toxicity by ProTox-II server were used. Results: Garciniaxanthone C from G. mangostana was found to be a drug-like molecule with low toxicity. This can be a candidate for SARS-Cov-2 antiviral through inhibitor activity on two viral enzymes consisting of Mpro and replicase with a binding affinity value that is more negative than other garciniaxanthone derivates and is stable. Garciniaxanthone C is predicted to bind and inhibit pro-inflammatory proteins that trigger cytokine storms, such as NFKB1 and PTGS2. Conclusions: Garciniaxanthone derivative compounds from G. mangostana may be candidates for SARS-CoV-2 antiviral and preventing cytokine storm through garciniaxanthone C activity
    corecore