23 research outputs found

    A regional study on the eddy kinetic energy transfers of the meso and submesoscale reservoirs in the ocean

    No full text
    This dissertation is based on regional numerical simulations and addresses, from an energetic perspective, the Meso (O(10-100)km) and Submesoscale (O(0.1- 10)km) variability in the Agulhas Current region.(i) Submesoscale variability at the transition between the two Agulhas Current branches (28◩E-26◩E) is dominated, in the absence of mesoscale meanders, by cyclonic frontal eddies forming a ’vortex street’. The frontogenetic background strain intensifies the frontal shear which triggers the barotropic instability leading to submesoscale eddies generation.(ii) A modal Eddy Kinetic Energy budget is derived to characterize the energy transfers between the different vertical structures. Interactions canalized by topography (3 processes) globally result in a larger energy loss for mesoscale eddies than dissipation processes (bottom friction and wind) and an inverse vertical cascade (triadic interactions) reinforces mesoscale eddies in offshore areas.(iii) Our modal budget allows to characterize the Agulhas Current region as a net energy source for mesoscale eddies in contradiction with one inferred from altimetry data. The discrepancies come from altimetry data not accounting for the main contribution of the dynamics to mesoscale eddies energy sources and sinks (ageostrophic linear part of the dynamics of the barotropic and 1st baroclinic modes).Cette thĂšse est basĂ©e sur des simulations numĂ©riques rĂ©gionales et aborde, d’un point de vue Ă©nergĂ©tique, la variabilitĂ© Ă  MĂ©so (O(10-100)km) et Sous-mĂ©soĂ©chelle (O(0.1-10)km) dans la rĂ©gion du Courant des Aiguilles.(i) La variabilitĂ© de sous-mĂ©soĂ©chelle Ă  la transition entre les deux branches du Courant des Aiguilles (28◩E-26◩E) est dominĂ©e, en l’absence de mĂ©andres de mĂ©soĂ©chelle, par des tourbillons cycloniques frontaux formant un ‘vortex street’. La tension ambiante frontogĂ©nĂ©tique intensifie le cisaillement frontal qui dĂ©clenche l’instabilitĂ© barotrope menant Ă  la gĂ©nĂ©ration de tourbillons de sous-mĂ©soĂ©chelle.(ii) Un budget modal d’Energie CinĂ©tique des Tourbillons est dĂ©veloppĂ© pour caractĂ©riser les transferts d’énergie entre les diffĂ©rentes structures verticales. Les interactions canalisĂ©es par la topographie (3 processus) rĂ©sultent globalement en une perte d’énergie pour les tourbillons de mĂ©soĂ©chelle plus grande que les processus de dissipation (friction au fond et vent) et une cascade verticale inverse (interactions triadiques) renforce les tourbillons de mĂ©soĂ©chelle dans les zones au large.(iii) Notre budget modal permet de caractĂ©riser la rĂ©gion du Courant des Aiguilles comme une source nette d’énergie pour les tourbillons de mĂ©soĂ©chelle en contradiction avec celui estimĂ© Ă  partir de donnĂ©es d’altimĂ©trie. Cette diffĂ©rence vient des donnĂ©es d’altimĂ©trie ne tenant pas compte de la contribution principale de la dynamique aux sources et puits d’énergie des tourbillons de mĂ©soĂ©chelle (partie linĂ©aire de la dynamique agĂ©ostrophique du mode barotrope et du 1er mode barocline)

    A regional study on the eddy kinetic energy transfers of the meso and submesoscale reservoirs in the ocean

    No full text
    This dissertation is based on regional numerical simulations and addresses, from an energetic perspective, the Meso (O(10-100)km) and Submesoscale (O(0.1- 10)km) variability in the Agulhas Current region.(i) Submesoscale variability at the transition between the two Agulhas Current branches (28◩E-26◩E) is dominated, in the absence of mesoscale meanders, by cyclonic frontal eddies forming a ’vortex street’. The frontogenetic background strain intensifies the frontal shear which triggers the barotropic instability leading to submesoscale eddies generation.(ii) A modal Eddy Kinetic Energy budget is derived to characterize the energy transfers between the different vertical structures. Interactions canalized by topography (3 processes) globally result in a larger energy loss for mesoscale eddies than dissipation processes (bottom friction and wind) and an inverse vertical cascade (triadic interactions) reinforces mesoscale eddies in offshore areas.(iii) Our modal budget allows to characterize the Agulhas Current region as a net energy source for mesoscale eddies in contradiction with one inferred from altimetry data. The discrepancies come from altimetry data not accounting for the main contribution of the dynamics to mesoscale eddies energy sources and sinks (ageostrophic linear part of the dynamics of the barotropic and 1st baroclinic modes).Cette thĂšse est basĂ©e sur des simulations numĂ©riques rĂ©gionales et aborde, d’un point de vue Ă©nergĂ©tique, la variabilitĂ© Ă  MĂ©so (O(10-100)km) et Sous-mĂ©soĂ©chelle (O(0.1-10)km) dans la rĂ©gion du Courant des Aiguilles.(i) La variabilitĂ© de sous-mĂ©soĂ©chelle Ă  la transition entre les deux branches du Courant des Aiguilles (28◩E-26◩E) est dominĂ©e, en l’absence de mĂ©andres de mĂ©soĂ©chelle, par des tourbillons cycloniques frontaux formant un ‘vortex street’. La tension ambiante frontogĂ©nĂ©tique intensifie le cisaillement frontal qui dĂ©clenche l’instabilitĂ© barotrope menant Ă  la gĂ©nĂ©ration de tourbillons de sous-mĂ©soĂ©chelle.(ii) Un budget modal d’Energie CinĂ©tique des Tourbillons est dĂ©veloppĂ© pour caractĂ©riser les transferts d’énergie entre les diffĂ©rentes structures verticales. Les interactions canalisĂ©es par la topographie (3 processus) rĂ©sultent globalement en une perte d’énergie pour les tourbillons de mĂ©soĂ©chelle plus grande que les processus de dissipation (friction au fond et vent) et une cascade verticale inverse (interactions triadiques) renforce les tourbillons de mĂ©soĂ©chelle dans les zones au large.(iii) Notre budget modal permet de caractĂ©riser la rĂ©gion du Courant des Aiguilles comme une source nette d’énergie pour les tourbillons de mĂ©soĂ©chelle en contradiction avec celui estimĂ© Ă  partir de donnĂ©es d’altimĂ©trie. Cette diffĂ©rence vient des donnĂ©es d’altimĂ©trie ne tenant pas compte de la contribution principale de la dynamique aux sources et puits d’énergie des tourbillons de mĂ©soĂ©chelle (partie linĂ©aire de la dynamique agĂ©ostrophique du mode barotrope et du 1er mode barocline)

    Etude rĂ©gionale des transferts d’Energie cinĂ©tique pour les rĂ©servoirs des tourbillons de mĂ©so et sous-mĂ©soĂ©chelle dans l’ocĂ©an

    No full text
    Cette thĂšse est basĂ©e sur des simulations numĂ©riques rĂ©gionales et aborde, d’un point de vue Ă©nergĂ©tique, la variabilitĂ© Ă  MĂ©so (O(10-100)km) et Sous-mĂ©soĂ©chelle (O(0.1-10)km) dans la rĂ©gion du Courant des Aiguilles.(i) La variabilitĂ© de sous-mĂ©soĂ©chelle Ă  la transition entre les deux branches du Courant des Aiguilles (28◩E-26◩E) est dominĂ©e, en l’absence de mĂ©andres de mĂ©soĂ©chelle, par des tourbillons cycloniques frontaux formant un ‘vortex street’. La tension ambiante frontogĂ©nĂ©tique intensifie le cisaillement frontal qui dĂ©clenche l’instabilitĂ© barotrope menant Ă  la gĂ©nĂ©ration de tourbillons de sous-mĂ©soĂ©chelle.(ii) Un budget modal d’Energie CinĂ©tique des Tourbillons est dĂ©veloppĂ© pour caractĂ©riser les transferts d’énergie entre les diffĂ©rentes structures verticales. Les interactions canalisĂ©es par la topographie (3 processus) rĂ©sultent globalement en une perte d’énergie pour les tourbillons de mĂ©soĂ©chelle plus grande que les processus de dissipation (friction au fond et vent) et une cascade verticale inverse (interactions triadiques) renforce les tourbillons de mĂ©soĂ©chelle dans les zones au large.(iii) Notre budget modal permet de caractĂ©riser la rĂ©gion du Courant des Aiguilles comme une source nette d’énergie pour les tourbillons de mĂ©soĂ©chelle en contradiction avec celui estimĂ© Ă  partir de donnĂ©es d’altimĂ©trie. Cette diffĂ©rence vient des donnĂ©es d’altimĂ©trie ne tenant pas compte de la contribution principale de la dynamique aux sources et puits d’énergie des tourbillons de mĂ©soĂ©chelle (partie linĂ©aire de la dynamique agĂ©ostrophique du mode barotrope et du 1er mode barocline).This dissertation is based on regional numerical simulations and addresses, from an energetic perspective, the Meso (O(10-100)km) and Submesoscale (O(0.1- 10)km) variability in the Agulhas Current region.(i) Submesoscale variability at the transition between the two Agulhas Current branches (28◩E-26◩E) is dominated, in the absence of mesoscale meanders, by cyclonic frontal eddies forming a ’vortex street’. The frontogenetic background strain intensifies the frontal shear which triggers the barotropic instability leading to submesoscale eddies generation.(ii) A modal Eddy Kinetic Energy budget is derived to characterize the energy transfers between the different vertical structures. Interactions canalized by topography (3 processes) globally result in a larger energy loss for mesoscale eddies than dissipation processes (bottom friction and wind) and an inverse vertical cascade (triadic interactions) reinforces mesoscale eddies in offshore areas.(iii) Our modal budget allows to characterize the Agulhas Current region as a net energy source for mesoscale eddies in contradiction with one inferred from altimetry data. The discrepancies come from altimetry data not accounting for the main contribution of the dynamics to mesoscale eddies energy sources and sinks (ageostrophic linear part of the dynamics of the barotropic and 1st baroclinic modes)

    Mesoscale Eddy Kinetic Energy budgets and transfers between vertical modes in the Agulhas Current

    No full text
    Western boundary currents are hotspots of mesoscale variability and eddy-topography interactions, which channel energy toward smaller scales and eventually down to dissipation. Here, we assess the main mesoscale eddies energy sinks in the Agulhas Current region from a regional numerical simulation. We derive an eddy kinetic energy (ÂŻÂŻÂŻÂŻÂŻÂŻÂŻÂŻÂŻEKE) budget in the framework of the vertical modes. It accounts for energy transfers between energy reservoirs and vertical modes, including transfers channeled by topography. The variability is dominated by mesoscale eddies (barotropic and 1st baroclinic modes) in the path of intense mean currents. Eddy-topography interactions result in a major mesoscale eddy energy sink, along three different energy routes, with comparable importance : transfers toward bottom-intensified time-mean currents, generation of higher baroclinic modes, and bottom friction. The generation of higher baroclinic modes takes different forms in the Northern Agulhas Current, where it corresponds to non-linear transfers to smaller vertical eddies on the slope, and in the Southern Agulhas Current, where it is dominated by a (linear) generation of internal-gravity waves over topography. Away from the shelf, mesoscale eddies gain energy by an inverse vertical turbulent cascade. However, the Agulhas Current region remains a net source of mesoscale eddy energy due to the strong generation of eddies, modulated by the topography, especially in the Southern Agulhas Current. It shows that the local generation of mesoscale eddies dominates the net ÂŻÂŻÂŻÂŻÂŻÂŻÂŻÂŻÂŻEKE budget, contrary to the paradigm of mesoscale eddies decay upon western boundaries

    Generation of submesoscale frontal eddies in the Agulhas Current

    No full text
    This study addresses the dynamics of the Agulhas inshore front in the submesoscale range upstream of 26°E. Submesoscale frontal eddies are observed in the vicinity of Port Elizabeth (26°E) from satellite images and in observations collected from under‐water gliders. Using a submesoscale‐resolving numerical model (dx ~ 0.75 km) we are able to simulate similar submesoscale eddies. Barotropic instability is confirmed as the generation mechanism by a 1D linear stability analysis and an eddy kinetic energy budget. Kinetic energy is transferred from the mean flow to the eddies through the mean horizontal shear, which is a signature of barotropic instability. When the Agulhas Current is in a non‐meandering state, submesoscale eddy generation is a recurrent process which locally drives the front's variability. Along the front, the spatial variability of barotropic instability is shaped by the background strain. A large strain aligned with the frontal axis intensifies the frontal shear upstream of 28°E while a weakening of the strain allows for barotropic instability to be triggered downstream. Although an intermittent process, the barotropic instability shows a dominant period of variability comparable with the variability of the Agulhas Current and Undercurrent

    Vortex-wall interaction on the ÎČ-plane and the generation of deep submesoscale cyclones by internal Kelvin Waves-current interactions

    No full text
    International audienceIn this paper, we investigate the vortex-wall interaction on the ÎČ-plane, using a submesoscale and internal waves resolving model in an idealised context. Our results bring new insights on the dynamics of oceanic mesoscale eddies as they drift toward a western boundary. We show that there exists a strong cyclone/anticyclone asymmetry in the interaction, contrary to what was suggested in previous studies: anticyclones cannot drift meridionally along the wall because of internal Kelvin Waves-current interactions. This interaction is shown to be an efficient mechanism to generate small coherent submesoscale cyclones, which can travel hundreds of kilometres into the interior of the ocean

    Can mesoscale eddy kinetic energy sources and sinks be inferred from sea surface height in the Agulhas Current ?

    No full text
    Western boundaries (WB) have been suggested to be hotspots of mesoscale eddy decay, using an eddy kinetic energy (EKE) flux divergence based on sea surface height (η). The η-based diagnostic requires approximations, including the use of geostrophic velocities. Here, we assess to what extent mesoscale EKE flux divergence can be inferred from η using a numerical simulation of the Agulhas Current. The EKE flux divergence is composed of two terms: the eddy-pressure work (linear component) and the advection of EKE (nonlinear component). Both are mainly positive in the WB region (net EKE sources). However, it is not reliably accounted by both η-based diagnostics. The η-based eddy-pressure work has a net contribution in the WB region of the opposite sign than the true one. Ageostrophic eddy-pressure work dominates the geostrophic one (corresponding to a ÎČ-contribution). It is explained by mesoscale eddies’s scale to fall below the scale of ζ/ÎČ (ζ: root mean square of normalized relative vorticity for mesoscale eddies; ÎČ: latitudinal variations of Coriolis parameter). The advection done by geostrophic EKE flux dominates the EKE flux divergence in the WB region. It results in the EKE flux divergence to be qualitatively estimable using η (up to 54 % of the net EKE source). Our results in the Agulhas Current show a mesoscale eddy dynamics in contrast with the decay's paradigm at western boundaries. Further analysis in other western boundaries are required to complete our understanding of mesoscale eddies dynamics

    Can Mesoscale Eddy Kinetic Energy Sources and Sinks Be Inferred From Sea Surface Height in the Agulhas Current Region?

    No full text
    Western boundaries have been suggested as mesoscale eddy graveyards, using a diagnostic of the eddy kinetic energy (EKE) flux divergence based on sea surface height (η). The graveyard's paradigm relies on the approximation of geostrophy—required by the use of η—and other approximations that support long baroclinic Rossby waves as the dominant contribution to the EKE flux divergence. However, a recent study showed an opposite paradigm in the Agulhas Current region using an unapproximated EKE flux divergence. Here, we assess the validity of the approximations used to derive the η-based EKE flux divergence using a regional numerical simulation of the Agulhas Current. The EKE flux divergence consists of the eddy pressure work (EPW) and the EKE advection (AEKE). We show that geostrophy is valid for inferring AEKE, but that all approximations are invalid for inferring EPW. A scale analysis shows that at mesoscale (L > O(30) km), EPW is dominated by coupled geostrophic-ageostrophic EKE flux and that Rossby waves effect is weak. There is also a hitherto neglected topographic contribution, which can be locally dominant. AEKE is dominated by the geostrophic EKE flux, which makes a substantial contribution (54%) to the net regional mesoscale EKE source represented by the EKE flux divergence. Other contributions, including topographic and ageostrophic effects, are also significant. Our results support the use of η to infer a qualitative estimate of the EKE flux divergence in the Agulhas Current region. However, they invalidate the approximations on mesoscale eddy dynamics that underlie the graveyard's paradigm. Key Points We assess whether the mesoscale eddy energy flux divergence can be calculated from sea surface height in the Agulhas Current region Geostrophy allows a qualitative estimate of eddy energy advection, but not of eddy pressure work This favors the use of sea surface height, but challenges the founding approximations of an earlier paradigm Plain Language Summary In the ocean, the most energetic motions are large-scale eddies with horizontal scales ranging from tens to hundreds of kilometers. These are major components of the ocean energy budget, and unraveling their lifecycles is crucial to improving our understanding of ocean dynamics. Although the generation of large-scale eddies is well documented, how their energy is dissipated remains uncertain. Based on satellite observations of the sea surface and approximations to the dynamics of large-scale eddies, it has been suggested that they decay at western boundaries of oceanic basins, thereby closing their lifecycle. However, based on different data and approximations, a recent study has suggested that large-scale eddies are predominantly generated in a specific western boundary region, such as the Agulhas Current. Our study explains which of the data (sea surface observations) or the assumed leading order dynamics (approximations) explains the opposite eddy energy sources and sinks shown by the two studies in the Agulhas Current region. Our results show that the use of sea surface observations is valid for qualitatively inferring the regional eddy energy source, but not the assumed leading order dynamics. This has implications for (a) our understanding and (b) study strategies of the energetics of large-scale eddies
    corecore