80 research outputs found

    Simulation System for the Wendelstein 7-X Safety Control System

    Full text link
    The Wendelstein 7-X (W7-X) Safety Instrumented System (SIS) ensures personal safety and investment protection. The development and implementation of the SIS are based on the international safety standard for the process industry sector, IEC 61511. The SIS exhibits a distributed and hierarchical organized architecture consisting of a central Safety System (cSS) on the top and many local Safety Systems (lSS) at the bottom. Each technical component or diagnostic system potentially hazardous for the staff or for the device is equipped with an lSS. The cSS is part of the central control system of W7-X. Whereas the lSSs are responsible for the safety of each individual component, the cSS ensures safety of the whole W7-X device. For every operation phase of the W7-X experiment hard- and software updates for the SIS are mandatory. New components with additional lSS functionality and additional safety signals have to be integrated. Already established safety functions must be adapted and new safety functions have to be integrated into the cSS. Finally, the safety programs of the central and local safety systems have to be verified for every development stage and validated against the safety requirement specification. This contribution focuses on the application of a model based simulation system for the whole SIS of W7-X. A brief introduction into the development process of the SIS and its technical realization will be give followed by a description of the design and implementation of the SIS simulation system using the framework SIMIT (Siemens). Finally, first application experiences of this simulation system for the preparation of the SIS for the upcoming operation phase OP 1.2b of W7-X will be discussed

    Physics-regularized neural network of the ideal-MHD solution operator in Wendelstein 7-X configurations

    Get PDF
    The stellarator is a promising concept to produce energy from nuclear fusion by magnetically confining a high-pressure plasma. In a stellarator, the confining field is three-dimensional, and the computational cost of solving the 3D MHD equations currently limits stellarator research and design. Although data-driven approaches have been proposed to provide fast 3D MHD equilibria, the accuracy with which equilibrium properties are reconstructed is unknown. In this work, we describe an artificial neural network (NN) that quickly approximates the ideal-MHD solution operator in Wendelstein 7-X (W7-X) configurations. This model fulfils equilibrium symmetries by construction. The MHD force residual regularizes the solution of the NN to satisfy the ideal-MHD equations. The model predicts the equilibrium solution with high accuracy, and it faithfully reconstructs global equilibrium quantities and proxy functions used in stellarator optimization. The regularization term enforces that the NN reduces the ideal-MHD force residual, and solutions that are better than ground truth equilibria can be obtained at inference time. We also optimize W7-X magnetic configurations, where desiderable configurations can be found in terms of fast particle confinement. This work demonstrates with which accuracy NN models can approximate the 3D ideal-MHD solution operator and reconstruct equilibrium properties of interest, and it suggests how they might be used to optimize stellarator magnetic configurations.Comment: 46 pages, 23 figures, to be submitted to Nuclear Fusio

    Nonlinear gyrokinetic PIC simulations in stellarators with the code EUTERPE

    Get PDF
    In this work, the first nonlinear particle-in-cell simulations carried out in a stellarator with the global gyrokinetic code EUTERPE using realistic plasma parameters are reported. Several studies are conducted with the aim of enabling reliable nonlinear simulations in stellarators with this code. First, EUTERPE is benchmarked against ORB5 in both linear and nonlinear settings in a tokamak configuration. Next, the use of noise control and stabilization tools, a Krook-type collision operator, markers weight smoothing and heating sources is investigated. It is studied in detail how these tools influence the linear growth rate of instabilities in both tokamak and stellarator geometries and their influence on the linear zonal flow evolution in a stellarator. Then, it is studied how these tools allow improving the quality of the results in a set of nonlinear simulations of electrostatic turbulence in a stellarator configuration. Finally, these tools are applied to a W7-X magnetic configuration using experimental plasma parameters.Comment: 24 pages, 19 figure

    Fast simulations for large aspect ratio stellarators with the neoclassical code KNOSOS

    Get PDF
    In this work, a new version of KNOSOS is presented. KNOSOS is a low-collisionality radially-local, bounce-averaged neoclassical code that is extremely fast, and at the same time, includes physical effects often neglected by more standard codes: the component of the magnetic drift that is tangent to the flux-surface and the variation of the electrostatic potential on the flux-surface. An earlier version of the code could only describe configurations that were sufficiently optimized with respect to neoclassical transport. KNOSOS can now be applied to any large aspect ratio stellarator, and its performance is demonstrated by means of detailed simulations in the configuration space of Wendelstein 7-X.Comment: IAEA paper, submitted to Nuclear Fusio

    Deposition of 13C tracer and impurity elements on the divertor of Wendelstein 7-X

    Get PDF
    Carbon impurity transport and deposition were investigated in the Wendelstein 7-X stellarator by injecting isotopically labelled methane ((CH4)-C-13) into the edge plasma during the last plasma operations of its Operational Phase (OP) 1.2B experimental campaign. C-13 deposition was measured by secondary ion mass spectrometry (SIMS) on three upper divertor tiles located on the opposite side of the vessel to the(13)CH(4) inlet. The highest C-13 inventories were found as stripe-like patterns on both sides of the different strike lines. These high deposition areas were also analysed for their impurity contents and the depth profiles of the main elements in the layers. Layered deposition of different impurity elements such as Cr, Ni, Mo and B was found to reflect various events such as high metallic impurities during the OP1.2A and three boronizations carried out during OP1.2B.Peer reviewe

    Accelerated Bayesian inference of plasma profiles with self-consistent MHD equilibria at W7-X via neural networks

    Full text link
    High-⟨β⟩\langle \beta \rangle operations require a fast and robust inference of plasma parameters with a self-consistent MHD equilibrium. Precalculated MHD equilibria are usually employed at W7-X due to the high computational cost. To address this, we couple a physics-regularized NN model that approximates the ideal-MHD equilibrium with the Bayesian modeling framework Minerva. We show the fast and robust inference of plasma profiles (electron temperature and density) with a self-consistent MHD equilibrium approximated by the NN model. We investigate the robustness of the inference across diverse synthetic W7-X plasma scenarios. The inferred plasma parameters and their uncertainties are compatible with the parameters inferred using the VMEC, and the inference time is reduced by more than two orders of magnitude. This work suggests that MHD self-consistent inferences of plasma parameters can be performed between shots.Comment: 18 pages, 6 figure

    On the interaction between the island divertor heat fluxes, the scrape-off layer radial electric field and the edge turbulence in Wendelstein 7-X plasmas

    Get PDF
    The formation of the radial electric field, E-r in the scrape-off layer (SOL) has been experimentally studied for attached divertor conditions in stellarator W7-X. The main objective of this study is to test the validity in a complex three-dimensional (3D) island divertor of simple models, typically developed in tokamaks, relating E-r in the SOL to the sheath potential drop gradient at the target. Additionally, we investigate the effect of the edge E-r shear on the reduction of density fluctuation amplitude, a well-established phenomenon according to the existing bibliography. The main diagnostic for measurements in the SOL is a V-band Doppler reflectometer that can provide the measurement of the E-r and density fluctuations with good spatial resolution. 3D measurements of divertor parameters have been carried out using infrared cameras, with the exponential decay length of the divertor heat flux (lambda(q)) resulting in a suitable proxy for the model-relevant lambda(T), the exponential decay length of the temperature at the divertor. In the investigated attached regimes, it is shown for the first time that the formation of the E-r in the SOL depends on parameters at the divertor, following a E-r proportional to T-e/lambda(q) qualitatively similar to that found in a tokamak. Then, from the analyzed plasmas, the observed E-r shear at the edge is linked to a moderate local reduction of the amplitude of density fluctuations
    • …
    corecore