2,750 research outputs found
Survival of Fecal Contamination Indicator Organisms in Soil
Soils amended with human or animal waste may result in pathogen contamination of ground and surface water. Because temperature has been shown to affect pathogen survival, two laboratory studies were conducted to evaluate the impact of extremes in temperature on bacterial and viral pathogen indicator die-off in soil. A Captina silt loam was amended with broiler litter (0.1 g/g dry soil), septic tank effluent, or Escherichia coli (ATCC 13706) culture (both at 0.04 and 0.1 mL/g dry soil in the two respective studies), incubated at 5 and 35°C, and analyzed over time to determine the number of fecal coliform, E. coli, and coliphage remaining. Pathogen indicator die-off rate constants (k) for all indicator- temperature-treatment combinations were determined by first-order kinetics. For all three pathogen indicators, die-off was significantly more rapid at 35°C than at 5°C. In both studies, fecal coliform die-off rates were not different from E. coli die-off rates across each temperature-treatment combination. Levels of these bacterial indicators appeared in a ratio of 1:0.94 with 95% confidence intervals at 0.89 and 0.99 in the E. coli- and litter-amended soils. Die-off of the viral indicator was significantly slower than the die-off of the bacterial indicators at 5°C in litter-amended soil. Die-off of the bacterial indicator, E. coli, in soil amended with E. coli culture was not significantly different than die-off in soil amended with broiler litter at 5 or 35°C in the two studies. Because the higher incubation temperature increased die-off rates for all three indicators, it is expected that the potential for contamination of ground and surface water decreases with increasing temperature
Scanning Tunnelling Spectroscopic Studies of Dirac Fermions in Graphene and Topological Insulators
We report novel properties derived from scanning tunnelling spectroscopic (STS) studies of Dirac fermions in graphene and the surface state (SS) of a strong topological insulator (STI), Bi_2Se_3. For mono-layer graphene grown on Cu by chemical vapour deposition (CVD), strain-induced scalar and gauge potentials are manifested by the charging effects and the tunnelling conductance peaks at quantized energies, respectively. Additionally, spontaneous time-reversal symmetry breaking is evidenced by the alternating anti-localization and localization spectra associated with the zero-mode of two sublattices while global time-reversal symmetry is preserved under the presence of pseudo-magnetic fields. For Bi_2Se_3 epitaxial films grown on Si(111) by molecular beam epitaxy (MBE), spatially localized unitary impurity resonances with sensitive dependence on the energy difference between the Fermi level and the Dirac point are observed for samples thicker than 6 quintuple layers (QL). These findings are characteristic of the SS of a STI and are direct manifestation of strong topological protection against impurities. For samples thinner than 6-QL, STS studies reveal the openup of an energy gap in the SS due to overlaps of wave functions between the surface and interface layers. Additionally, spin-preserving quasiparticle interference wave-vectors are observed, which are consistent with the Rashba-like spin-orbit splitting
Emission-Line Galaxy Surveys as Probes of the Spatial Distribution of Dwarf Galaxies. I. The University of Michigan Survey
Objective-prism surveys which select galaxies on the basis of line-emission
are extremely effective at detecting low-luminosity galaxies and constitute
some of the deepest available samples of dwarfs. In this study, we confirm that
emission-line galaxies (ELGs) in the University of Michigan (UM)
objective-prism survey (MacAlpine et al. 1977-1981) are reliable tracers of
large-scale structure, and utilize the depth of the samples to examine the
spatial distribution of low-luminosity (M -18.0) dwarfs relative to
higher luminosity giant galaxies (M -18.0) in the Updated Zwicky
Catalogue (Falco et al. 1999). New spectroscopic data are presented for 26 UM
survey objects. We analyze the relative clustering properties of the overall
starbursting ELG and normal galaxy populations, using nearest neighbor and
correlation function statistics. This allows us to determine whether the
activity in ELGs is primarily caused by gravitational interactions. We conclude
that galaxy-galaxy encounters are not the sole cause of activity in ELGs since
ELGs tend to be more isolated and are more often found in the voids when
compared to their normal galaxy counterparts. Furthermore, statistical analyses
performed on low-luminosity dwarf ELGs show that the dwarfs are less clustered
when compared to their non-active giant neighbors. The UM dwarf samples have
greater percentages of nearest neighbor separations at large values and lower
correlation function amplitudes relative to the UZC giant galaxy samples. These
results are consistent with the expectations of galaxy biasing.Comment: 17 pages, 4 tables, 10 figures. Accepted for publication in the Ap
Cholesterol efflux capacity is associated with lipoprotein size and vascular health in mild to moderate psoriasis.
Background and objective: Psoriasis is a systemic inflammatory condition with poor cholesterol transport measured by cholesterol efflux capacity (CEC) that is associated with a heightened risk of cardiovascular disease (CVD). In psoriasis patients, we sought to characterize the lipoprotein profile by size using a novel nuclear magnetic resonance algorithm in patients with low CEC compared to normal CEC.
Methods: Lipoprotein profile was assessed using the novel nuclear magnetic resonance LipoProfile-4 deconvolution algorithm. Aortic vascular inflammation (VI) and non-calcified burden (NCB) were characterized via positron emission tomography-computed tomography and coronary computed tomography angiography. To understand the relationship between lipoprotein size and markers of subclinical atherosclerosis, linear regression models controlling for confounders were constructed.
Results: Psoriasis patients with low CEC had higher more severe psoriasis (p = 0.04), VI (p = 0.04) and NCB (p = 0.001), concomitant with smaller high-density lipoprotein (HDL) (p < 0.001) and low-density lipoprotein (LDL) particles (p < 0.001). In adjusted models HDL size (β = −0.19; p = 0.02) and LDL size (β = −0.31; p < 0.001) associated with VI and NCB. Lastly, HDL size strongly associated with LDL size in fully adjusted models (β = −0.27; p < 0.001).
Conclusion: These findings demonstrate that in psoriasis, low CEC associates with a lipoprotein profile comprised of smaller HDL and LDL particles which correlates with vascular health and may be driving early onset atherogenesis. Further, these results demonstrate a relationship between HDL and LDL size and provide novel insights into the complexities of HDL and LDL as biomarkers of vascular health.pre-print1259 K
Improving detection of surface discontinuities in visual-force control systms
In this paper, a new approach to detect surface discontinuities in a visual–force control task is described. A task which consists in tracking a surface using visual–force information is shown. In this task, in order to reposition the robot tool with respect to the surface it is necessary to determine the surface discontinuities. This paper describes a new method to detect surface discontinuities employing sensorial information obtained from a force sensor, a camera and structured light. This method has proved to be more robust than previous systems even in situations where high frictions occur
Statistical Model of Shape Moments with Active Contour Evolution for Shape Detection and Segmentation
This paper describes a novel method for shape representation and robust image segmentation. The proposed method combines two well known methodologies, namely, statistical shape models and active contours implemented in level set framework. The shape detection is achieved by maximizing a posterior function that consists of a prior shape probability model and image likelihood function conditioned on shapes. The statistical shape model is built as a result of a learning process based on nonparametric probability estimation in a PCA reduced feature space formed by the Legendre moments of training silhouette images. A greedy strategy is applied to optimize the proposed cost function by iteratively evolving an implicit active contour in the image space and subsequent constrained optimization of the evolved shape in the reduced shape feature space. Experimental results presented in the paper demonstrate that the proposed method, contrary to many other active contour segmentation methods, is highly resilient to severe random and structural noise that could be present in the data
Protoplanetary disks in Kₛ-band total intensity and polarized light
Context. The diverse morphology among protoplanetary disks may result from planet-disk interactions, suggesting the presence of planets undergoing formation. The characterization of disks can provide information on the formation environments of planets. To date, most imaging campaigns have probed the polarized light from disks, which is only a fraction of the total scattered light and not very sensitive to planetary emission. /
Aims. We aim to observe and characterize protoplanetary disk systems in the near-infrared in both polarized and total intensity light to carry out an unprecedented study of the dust scattering properties of disks, as well as of any possible planetary companions. /
Methods. Using the star-hopping mode of the SPHERE instrument at the Very Large Telescope, we observed 29 young stars hosting protoplanetary disks and their reference stars in the Ks-band polarized light. We extracted disk signals in total intensity by removing stellar light using the corresponding reference star observations, by adopting the data imputation concept with sequential non-negative matrix factorization (DI-sNMF). For well-recovered disks in both polarized and total intensity light, we parameterized the polarization fraction phase functions using a scaled beta distribution. We investigated the empirical DI-sNMF detectability of disks using logistic regression. For systems with SPHERE data in the Y, J, and H bands, we have summarized their polarized color at an approximately 90° scattering angle. /
Results. We obtained high-quality disk images in total intensity for 15 systems and in polarized light for 23 systems. The total intensity detectability of disks primarily depends on the host star brightness, which determines adaptive-optics control ring imagery and thus stellar signals capture using DI-sNMF. The peak of polarization fraction tentatively correlates with the peak scattering angle, which could be reproduced using certain composition for compact dust, yet more detailed modeling studies are needed. Most of the disks are blue in polarized J – Ks color and the fact that they are relatively redder as stellar luminosity increases indicates larger scatterers. /
Conclusions. High-quality disk imagery in both total intensity and polarized light allows for disk characterizations in the polarization fraction. Combining these techniques reduces the confusion between the disk and planetary signals
Boron Nitride Monolayer: A Strain-Tunable Nanosensor
The influence of triaxial in-plane strain on the electronic properties of a
hexagonal boron-nitride sheet is investigated using density functional theory.
Different from graphene, the triaxial strain localizes the molecular orbitals
of the boron-nitride flake in its center depending on the direction of the
applied strain. The proposed technique for localizing the molecular orbitals
that are close to the Fermi level in the center of boron nitride flakes can be
used to actualize engineered nanosensors, for instance, to selectively detect
gas molecules. We show that the central part of the strained flake adsorbs
polar molecules more strongly as compared with an unstrained sheet.Comment: 20 pages, 9 figure
An Evolutionary Reduction Principle for Mutation Rates at Multiple Loci
A model of mutation rate evolution for multiple loci under arbitrary
selection is analyzed. Results are obtained using techniques from Karlin (1982)
that overcome the weak selection constraints needed for tractability in prior
studies of multilocus event models. A multivariate form of the reduction
principle is found: reduction results at individual loci combine topologically
to produce a surface of mutation rate alterations that are neutral for a new
modifier allele. New mutation rates survive if and only if they fall below this
surface - a generalization of the hyperplane found by Zhivotovsky et al. (1994)
for a multilocus recombination modifier. Increases in mutation rates at some
loci may evolve if compensated for by decreases at other loci. The strength of
selection on the modifier scales in proportion to the number of germline cell
divisions, and increases with the number of loci affected. Loci that do not
make a difference to marginal fitnesses at equilibrium are not subject to the
reduction principle, and under fine tuning of mutation rates would be expected
to have higher mutation rates than loci in mutation-selection balance. Other
results include the nonexistence of 'viability analogous, Hardy-Weinberg'
modifier polymorphisms under multiplicative mutation, and the sufficiency of
average transmission rates to encapsulate the effect of modifier polymorphisms
on the transmission of loci under selection. A conjecture is offered regarding
situations, like recombination in the presence of mutation, that exhibit
departures from the reduction principle. Constraints for tractability are:
tight linkage of all loci, initial fixation at the modifier locus, and mutation
distributions comprising transition probabilities of reversible Markov chains.Comment: v3: Final corrections. v2: Revised title, reworked and expanded
introductory and discussion sections, added corollaries, new results on
modifier polymorphisms, minor corrections. 49 pages, 64 reference
- …