16 research outputs found

    A new field instrument for leaf volatiles reveals an unexpected vertical profile of isoprenoid emission capacities in a tropical forest.

    Get PDF
    Both plant physiology and atmospheric chemistry are substantially altered by the emission of volatile isoprenoids (VI), such as isoprene and monoterpenes, from plant leaves. Yet, since gaining scientific attention in the 1950?s, empirical research on leaf VI has been largely confined to laboratory experiments and atmospheric observations. Here, we introduce a new field instrument designed to bridge the scales from leaf to atmosphere, by enabling precision VI detection in real time from plants in their natural ecological setting. With a field campaign in the Brazilian Amazon, we reveal an unexpected distribution of leaf emission capacities (EC) across the vertical axis of the forest canopy, with EC peaking in the mid-canopy instead of the sun-exposed canopy surface, and moderately high emissions occurring in understory specialist species. Compared to the simple interpretation that VI protect leaves from heat stress at the hot canopy surface, our results encourage a more nuanced view of the adaptive role of VI in plants. We infer that forest emissions to the atmosphere depend on the dynamic microenvironments imposed by canopy structure, and not simply on canopy surface conditions. We provide a new emissions inventory from 52 tropical tree species, revealing moderate consistency in EC within taxonomic groups. We highlight priorities in leaf volatiles research that require field-portable detection systems. Our self-contained, portable instrument provides real-time detection and live measurement feedback with precision and detection limits better than 0.5 nmolVI m-2 leaf s-1. We call the instrument ?PORCO? based on the gas detection method: photoionization of organic compounds. We provide a thorough validation of PORCO and demonstrate its capacity to detect ecologically driven variation in leaf emission rates and thus accelerate a nascent field of science: the ecology and ecophysiology of plant volatiles

    Isoprene emission structures tropical tree biogeography and community assembly responses to climate.

    Get PDF
    The prediction of vegetation responses to climate requires a knowledge of how climate-sensitive plant traits mediate not only the responses of individual plants, but also shifts in the species and functional compositions of whole communities. The emission of isoprene gas – a trait shared by one-third of tree species – is known to protect leaf biochemistry under climatic stress. Here, we test the hypothesis that isoprene emission shapes tree species compositions in tropical forests by enhancing the tolerance of emitting trees to heat and drought. Using forest inventory data, we estimated the proportional abundance of isoprene-emitting trees (pIE) at 103 lowland tropical sites. We also quantified the temporal composition shifts in three tropical forests – two natural and one artificial – subjected to either anomalous warming or drought. Across the landscape, pIE increased with site mean annual temperature, but decreased with dry season length. Through time, pIE strongly increased under high temperatures, and moderately increased following drought. Our analysis shows that isoprene emission is a key plant trait determining species responses to climate. For species adapted to seasonal dry periods, isoprene emission may tradeoff with alternative strategies, such as leaf deciduousness. Community selection for isoprene-emitting species is a potential mechanism for enhanced forest resilience to climatic change.Financial support for this study was provided to: T.C.T. and S.R.S. by grants NSF-PIRE #OISE-0730305, USDOE #3002937712, NASA #NNX17AF65G and the University of AZ Agnes Nelms Haury Program in Environment and Social Justice; to M.N.S. and S.R.S. by NASA-ESSF #NNX14AK95H; to C.V. by ERCStG-2014-639706-CONSTRAINTS; to I.S. by Grant Agency of the Czech Republic #16-26369S; and to P.M. by NERC # NE/ N006852/1 and ARC #DP170104091

    The capacity to emit isoprene differentiates the photosynthetic temperature responses of tropical plant species

    No full text
    Experimental research shows that isoprene emission by plants can improve photosynthetic performance at high temperatures. But whether species that emit isoprene have higher thermal limits than non‐emitting species remains largely untested. Tropical plants are adapted to narrow temperature ranges and global warming could result in significant ecosystem restructuring due to small variations in species' thermal tolerances. We compared photosynthetic temperature responses of 26 co‐occurring tropical tree and liana species to test whether isoprene‐emitting species are more tolerant to high temperatures. We classified species as isoprene emitters versus non‐emitters based on published datasets. Maximum temperatures for net photosynthesis were ~1.8°C higher for isoprene‐emitting species than for non‐emitters, and thermal response curves were 24% wider; differences in optimum temperatures (Topt) or photosynthetic rates at Topt were not significant. Modelling the carbon cost of isoprene emission, we show that even strong emission rates cause little reduction in the net carbon assimilation advantage over non‐emitters at supraoptimal temperatures. Isoprene emissions may alleviate biochemical limitations, which together with stomatal conductance, co‐limit photosynthesis above Topt. Our findings provide evidence that isoprene emission may be an adaptation to warmer thermal niches, and that emitting species may fare better under global warming than co‐occurring non‐emitting species. That isoprene emission enhances the thermal tolerance of photosynthesis is supported by decades of experimental physiology. But whether isoprene differentiates the thermal niches of emitting from non‐emitting species remains untested in the real world. We provide evidence that isoprene‐emitting tropical woody plant species photosynthesize to higher maximum temperatures, and over a broader thermal range, compared with co‐occurring, non‐emitting species. Even accounting for the carbon cost of isoprene emissions, we find no substantial trade‐offs associated with this high‐temperature advantage

    Cryptic phenology in plants: Case studies, implications, and recommendations

    No full text
    International audiencePlant phenology—the timing of cyclic or recurrent biological events in plants—offers insight into the ecology, evolution, and seasonality of plant-mediated ecosystem processes. Traditionally studied phenologies are readily apparent, such as flowering events, germination timing, and season-initiating budbreak. However, a broad range of phenologies that are fundamental to the ecology and evolution of plants, and to global biogeochemical cycles and climate change predictions, have been neglected because they are “cryptic”—that is, hidden from view (e.g., root production) or difficult to distinguish and interpret based on common measurements at typical scales of examination (e.g., leaf turnover in evergreen forests). We illustrate how capturing cryptic phenology can advance scientific understanding with two case studies: wood phenology in a deciduous forest of the northeastern USA and leaf phenology in tropical evergreen forests of Amazonia. Drawing on these case studies and other literature, we argue that conceptualizing and characterizing cryptic plant phenology is needed for understanding and accurate prediction at many scales from organisms to ecosystems. We recommend avenues of empirical and modeling research to accelerate discovery of cryptic phenological patterns, to understand their causes and consequences, and to represent these processes in terrestrial biosphere model
    corecore