434 research outputs found

    A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models

    Get PDF
    We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM) and catchment-scale hydrological models (CHM). Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and development conditions. These include the Liard (Canada), Mekong (SE Asia), Okavango (SW Africa), Rio Grande (Brazil), Xiangu (China) and Harper's Brook (UK). A single GHM (Mac-PDM.09) is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs typically simulate water resources impacts based on a more explicit representation of catchment water resources than that available from the GHM, and the CHMs include river routing. Simulations of average annual runoff, mean monthly runoff and high (Q5) and low (Q95) monthly runoff under baseline (1961-1990) and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1) prescribed increases in global mean temperature from the HadCM3 climate model and (2)a prescribed increase in global-mean temperature of 2oC for seven GCMs to explore response to climate model and structural uncertainty. We find that differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM, and they are generally larger for indicators of high and low flow. However, they are relatively small in comparison to the range of projections across the seven GCMs. Hence, for the six catchments and seven GCMs we considered, climate model structural uncertainty is greater than the uncertainty associated with the type of hydrological model applied. Moreover, shifts in the seasonal cycle of runoff with climate change are presented similarly by both hydrological models, although for some catchments the monthly timing of high and low flows differs.This implies that for studies that seek to quantify and assess the role of climate model uncertainty on catchment-scale runoff, it may be equally as feasible to apply a GHM as it is to apply a CHM, especially when climate modelling uncertainty across the range of available GCMs is as large as it currently is. Whilst the GHM is able to represent the broad climate change signal that is represented by the CHMs, we find, however, that for some catchments there are differences between GHMs and CHMs in mean annual runoff due to differences in potential evaporation estimation methods, in the representation of the seasonality of runoff, and in the magnitude of changes in extreme monthly runoff, all of which have implications for future water management issues

    6. Peatland Conservation

    Get PDF
    Expert assessors Stephanie Boudreau, Canadian Sphagnum Peat Moss Association, Canada Emma Goodyer, IUCN UK Peatlands Programme, UK Laura Graham, Borneo Orangutan Survival Foundation, Indonesia Richard Lindsay, University of East London, UK Edgar Karofeld, University of Tartu, Estonia David Locky, MacEwan University, Canada Nancy Ockendon, University of Cambridge, UK Anabel Rial, Independent Consultant & IUCN Species Survival Commission, Colombia Sarah Ross, Penny Anderson Associates, UK Nigel..

    Identification of an Antimicrobial Peptide from the Venom of the Trinidad Thick-Tailed Scorpion Tityus trinitatis with Potent Activity against ESKAPE Pathogens and Clostridioides difficile

    Get PDF
    Envenomation by the Trinidad thick-tailed scorpion Tityus trinitatis may result in fatal myocarditis and there is a high incidence of acute pancreatitis among survivors. Peptidomic analysis (reversed-phase HPLC followed by MALDI-TOF mass spectrometry and automated Edman degradation) of T. trinitatis venom led to the isolation and characterization of three peptides with antimicrobial activity. Their primary structures were established asTtAP-1 (FLGSLFSIGSKLLPGVFKLFSRKKQ.NH2), TtAP-2 (IFGMIPGLIGGLISAFK.NH2) and TtAP-3 (FFSLIPSLIGGLVSAIK.NH2). In addition, potassium channel and sodium channel toxins, present in the venom in high abundance, were identified by CID-MS/MS sequence analysis. TtAP-1 was the most potent against a range of clinically relevant Gram-positive and Gram-negative aerobes and against the anaerobe Clostridioides difficile (MIC = 3.1–12.5 ”g/mL). At a concentration of 1× MIC, TtAP-1 produced rapid cell death (Acinetobacter baumannii and Staphylococcus aureus). The therapeutic potential of TtAP-1 as an anti-infective agent is limited by its high hemolytic activity (LC50 = 18 ”g/mL against mouse erythrocytes) but the peptide constitutes a template for the design of analogs that maintain the high bactericidal activity against ESKAPE pathogens but are less toxic to human cells. It is suggested that the antimicrobial peptides in the scorpion venom facilitate the action of the neurotoxins by increasing the membrane permeability of cells from either prey or predator

    Macroscopic effects of the spectral structure in turbulent flows

    Full text link
    Two aspects of turbulent flows have been the subject of extensive, split research efforts: macroscopic properties, such as the frictional drag experienced by a flow past a wall, and the turbulent spectrum. The turbulent spectrum may be said to represent the fabric of a turbulent state; in practice it is a power law of exponent \alpha (the "spectral exponent") that gives the revolving velocity of a turbulent fluctuation (or "eddy") of size s as a function of s. The link, if any, between macroscopic properties and the turbulent spectrum remains missing. Might it be found by contrasting the frictional drag in flows with differing types of spectra? Here we perform unprecedented measurements of the frictional drag in soap-film flows, where the spectral exponent \alpha = 3 and compare the results with the frictional drag in pipe flows, where the spectral exponent \alpha = 5/3. For moderate values of the Reynolds number Re (a measure of the strength of the turbulence), we find that in soap-film flows the frictional drag scales as Re^{-1/2}, whereas in pipe flows the frictional drag scales as Re^{-1/4} . Each of these scalings may be predicted from the attendant value of \alpha by using a new theory, in which the frictional drag is explicitly linked to the turbulent spectrum. Our work indicates that in turbulence, as in continuous phase transitions, macroscopic properties are governed by the spectral structure of the fluctuations.Comment: 6 pages, 3 figure

    Safety evaluation of substituted thiophenes used as flavoring ingredients

    Get PDF
    AbstractThis publication is the second in a series by the Expert Panel of the Flavor and Extract Manufacturers Association summarizing the conclusions of its third systematic re-evaluation of the safety of flavorings previously considered to be generally recognized as safe (GRAS) under conditions of intended use. Re-evaluation of GRAS status for flavorings is based on updated considerations of exposure, structural analogy, metabolism, pharmacokinetics and toxicology and includes a comprehensive review of the scientific information on the flavorings and structurally related substances. Of the 12 substituted thiophenes reviewed here, 11 were reaffirmed as GRAS based on their rapid absorption, metabolism and excretion in humans and animals; the low estimated dietary exposure from flavor use; the wide margins of safety between the conservative estimates of intake and the no-observed-adverse effect levels; and the lack of significant genotoxic and mutagenic potential. For one of the substituted thiophenes, 3-acetyl-2,5-dimethylthiophene, it was concluded that more detailed exposure information, comparative metabolism studies and comprehensive toxicity data, including an in-depth evaluation of the mechanism of action for any adverse effects observed, are required for continuation of its FEMA GRASℱ status. In the absence of these data, the compound was removed from the FEMA GRAS list

    Assessment of a carbon dioxide laser for the measurement of thermal nociceptive thresholds following intramuscular administration of analgesic drugs in pain-free female cats

    Get PDF
    Objective: To assess the potential for using a thermal carbon dioxide (CO2) laser to 8 assess anti-nociception in pain-free cats. Animals: Sixty healthy adult female cats with a mean weight (± SD) of 3.3 k g (± 0. 6 11 kg). Methods: This is a prospective, blinded and randomised study. Cats were systematically allocated to one of six treatments 1) saline 0.2 ml/cat; 2) morphine 0.5 mg/kg; 3) buprenorphine 20 ÎŒg/kg; 4) medetomidine 2 ÎŒg/kg; 5) tramadol 2mg/kg; 6) ketoprofen 2 mg/kg. Latency to respond to thermal stimulation was assessed prior to intramuscular injection and at 6 time periods following injection (15-30; 30-45; 45- 18 60; 60-75; 90-105; 120-135 min). Thermal thresholds were assessed using time to respond behaviourally to stimulation with a 500 mW CO2 laser with maximum latency to respond set at 60 seconds. Differences in response latency for each treatment across the duration of the experiment were assessed using a Friedman's test. Differences between treatments at any given time were assessed using an independent Kruskal-Wallis test. Where significant effects were identified, pair-wise comparisons were conducted at 30-45, 60-75 and 120-135 min to further explain the direction of the effect. Results: Cats treated with morphine (χ2 = 12.90; df = 6; P = 0.045) and tramadol (χ2 = 20.28; df = 6; P = 0.002) showed significant increases in latency to respond over the duration of the test period. However, subsequent pairwise comparisons indicated that latencies at specific time points were only significantly different (P < 0.05) for tramadol at 60-75 and 90-105 min after administration. No significant pairwise comparisons were found within the morphine treatment group. Injection of saline, ketoprofen, medetomidine or buprenorphine showed no significant effect on latency to respond. Conclusions: This project further validates the CO 2 laser technique for use in cats. It can be used for assessment of thermal nociceptive thresholds in pain-free cats after analgesic administration and shows some promise in differentiating amongst analgesic treatments. It may provide a simpler alternative to existing systems although further exploration is required both in terms of its sensitivity and comparative utility (i.e. relative to other thermal threshold systems). Future experiments should seek to quantify the effects of skin temperature and sedation on latency to respond. Given that this technique was found to cause minor skin blistering in individuals that reached the 60 s exposure limit, a cut off time of <45 s is recommended

    Reducing publication delay to improve the efficiency and impact of conservation science.

    Get PDF
    Evidence-based decision-making is most effective with comprehensive access to scientific studies. If studies face significant publication delays or barriers, the useful information they contain may not reach decision-makers in a timely manner. This represents a potential problem for mission-oriented disciplines where access to the latest data is required to ensure effective actions are undertaken. We sought to analyse the severity of publication delay in conservation science-a field that requires urgent action to prevent the loss of biodiversity. We used the Conservation Evidence database to assess the length of publication delay (time from finishing data collection to publication) in the literature that tests the effectiveness of conservation interventions. From 7,447 peer-reviewed and non-peer-reviewed studies of conservation interventions published over eleven decades, we find that the raw mean publication delay was 3.2 years (±2SD = 0.1) and varied by conservation subject. A significantly shorter delay was observed for studies focused on Bee Conservation, Sustainable Aquaculture, Management of Captive Animals, Amphibian Conservation, and Control of Freshwater Invasive Species (Estimated Marginal Mean range from 1.4-1.9 years). Publication delay was significantly shorter for the non-peer-reviewed literature (Estimated Marginal Mean delay of 1.9 years ± 0.2) compared to the peer-reviewed literature (i.e., scientific journals; Estimated Marginal Mean delay of 3.0 years ± 0.1). We found publication delay has significantly increased over time (an increase of ~1.2 years from 1912 (1.4 years ± 0.2) to 2020 (2.6 years ± 0.1)), but this change was much weaker and non-significant post-2000s; we found no evidence for any decline. There was also no evidence that studies on more threatened species were subject to a shorter delay-indeed, the contrary was true for mammals, and to a lesser extent for birds. We suggest a range of possible ways in which scientists, funders, publishers, and practitioners can work together to reduce delays at each stage of the publication process
    • 

    corecore