1,467 research outputs found

    Intellectual Property Laws in Harmony with NAFTA: The Courts as Mediators Between the Global and the Local

    Get PDF
    This paper will argue that domestic courts can pro- vide a forum within which to mediate between these two extremes, to reconcile the ‘‘global’’ and the ‘‘local’’ — but that the courts themselves must adapt to meet the challenges that globalization places upon them. More specifically, the paper begins by setting out a framework for understanding harmonization of laws under NAFTA as one that encourages rather than eliminates diversity of law. The paper then studies the prevailing approaches to statutory interpretation that Canadian courts, most especially the Supreme Court of Canada and the Federal Court of Appeal, have been employing in deciding IP cases in a post-NAFTA environment to determine whether any or all of these approaches could effectively balance the ‘‘global’’ and the ‘‘local’’. This analysis is intended as a starting point for further inquiry about the role of domestic judicial decision-making in an era increasingly marked by an impetus towards the global harmonization of laws

    Intellectual Property Laws in Harmony with NAFTA: The Courts as Mediators Between the Global and the Local

    Get PDF
    This paper will argue that domestic courts can pro- vide a forum within which to mediate between these two extremes, to reconcile the ‘‘global’’ and the ‘‘local’’ — but that the courts themselves must adapt to meet the challenges that globalization places upon them. More specifically, the paper begins by setting out a framework for understanding harmonization of laws under NAFTA as one that encourages rather than eliminates diversity of law. The paper then studies the prevailing approaches to statutory interpretation that Canadian courts, most especially the Supreme Court of Canada and the Federal Court of Appeal, have been employing in deciding IP cases in a post-NAFTA environment to determine whether any or all of these approaches could effectively balance the ‘‘global’’ and the ‘‘local’’. This analysis is intended as a starting point for further inquiry about the role of domestic judicial decision-making in an era increasingly marked by an impetus towards the global harmonization of laws

    Nurse telephone triage for same day appointments in general practice: multiple interrupted time series trial of effect on workload and costs

    Get PDF
    OBJECTIVE: To compare the workloads of general practitioners and nurses and costs of patient care for nurse telephone triage and standard management of requests for same day appointments in routine primary care. DESIGN: Multiple interrupted time series using sequential introduction of experimental triage system in different sites with repeated measures taken one week in every month for 12 months. SETTING: Three primary care sites in York. Participants: 4685 patients: 1233 in standard management, 3452 in the triage system. All patients requesting same day appointments during study weeks were included in the trial. MAIN OUTCOME MEASURES: Type of consultation (telephone, appointment, or visit), time taken for consultation, presenting complaints, use of services during the month after same day contact, and costs of drugs and same day, follow up, and emergency care. RESULTS: The triage system reduced appointments with general practitioner by 29-44%. Compared with standard management, the triage system had a relative risk (95% confidence interval) of 0.85 (0.72 to 1.00) for home visits, 2.41 (2.08 to 2.80) for telephone care, and 3.79 (3.21 to 4.48) for nurse care. Mean overall time in the triage system was 1.70 minutes longer, but mean general practitioner time was reduced by 2.45 minutes. Routine appointments and nursing time increased, as did out of hours and accident and emergency attendance. Costs did not differ significantly between standard management and triage: mean difference £1.48 more per patient for triage (95% confidence interval -0.19 to 3.15). CONCLUSIONS: Triage reduced the number of same day appointments with general practitioners but resulted in busier routine surgeries, increased nursing time, and a small but significant increase in out of hours and accident and emergency attendance. Consequently, triage does not reduce overall costs per patient for managing same day appointments

    Matter-Antimatter Asymmetry in the Large Hadron Collider

    Full text link
    The matter-antimatter asymmetry is one of the greatest challenges in the modern physics. The universe including this paper and even the reader him(her)self seems to be built up of ordinary matter only. Theoretically, the well-known Sakharov's conditions remain the solid framework explaining the circumstances that matter became dominant against the antimatter while the universe cools down and/or expands. On the other hand, the standard model for elementary particles apparently prevents at least two conditions out of them. In this work, we introduce a systematic study of the antiparticle-to-particle ratios measured in various NNNN and AAAA collisions over the last three decades. It is obvious that the available experimental facilities turn to be able to perform nuclear collisions, in which the matter-antimatter asymmetry raises from ∼0\sim 0% at AGS to ∼100\sim 100% at LHC. Assuming that the final state of hadronization in the nuclear collisions takes place along the freezeout line, which is defined by a constant entropy density, various antiparticle-to-particle ratios are studied in framework of the hadron resonance gas (HRG) model. Implementing modified phase space and distribution function in the grand-canonical ensemble and taking into account the experimental acceptance, the ratios of antiparticle-to-particle over the whole range of center-of-mass-energies are very well reproduced by the HRG model. Furthermore, the antiproton-to-proton ratios measured by ALICE in pppp collisions is also very well described by the HRG model. It is likely to conclude that the LHC heavy-ion program will produce the same particle ratios as the pppp program implying the dynamics and evolution of the system would not depend on the initial conditions. The ratios of bosons and baryons get very close to unity indicating that the matter-antimatter asymmetry nearly vanishes at LHC.Comment: 9 pages, 5 eps-figures, revtex4-styl

    Hadronic Equation of State and Speed of Sound in Thermal and Dense Medium

    Full text link
    The equation of state p(ϵ)p(\epsilon) and speed of sound squared cs2c_s^2 are studied in grand canonical ensemble of all hadron resonances having masses ≤2 \leq 2\,GeV. This large ensemble is divided into strange and non-strange hadron resonances and furthermore to pionic, bosonic and femionic sectors. It is found that the pions represent the main contributors to cs2c_s^2 and other thermodynamic quantities including the equation of state p(ϵ)p(\epsilon) at low temperatures. At high temperatures, the main contributions are added in by the massive hadron resonances. The speed of sound squared can be calculated from the derivative of pressure with respect to the energy density, ∂p/∂ϵ\partial p/\partial \epsilon, or from the entropy-specific heat ratio, s/cvs/c_v. It is concluded that the physics of these two expressions is not necessarily identical. They are distinguishable below and above the critical temperature TcT_c. This behavior is observed at vanishing and finite chemical potential. At high temperatures, both expressions get very close to each other and both of them approach the asymptotic value, 1/31/3. In the HRG results, which are only valid below TcT_c, the difference decreases with increasing the temperature and almost vanishes near TcT_c. It is concluded that the HRG model can very well reproduce the results of the lattice quantum chromodynamics (QCD) of ∂p/∂ϵ\partial p/\partial \epsilon and s/cvs/c_v, especially at finite chemical potential. In light of this, energy fluctuations and other collective phenomena associated with the specific heat might be present in the HRG model. At fixed temperatures, it is found that cs2c_s^2 is not sensitive to the chemical potential.Comment: 19 pages, 6 figures with 13 eps graph

    The Effects of Quantum Entropy on the Bag Constant

    Full text link
    The effects of quantum entropy on the bag constant are studied at low temperatures and small chemical potentials. The inclusion of the quantum entropy of the quarks in the equation of state provides the hadronic bag with an additional heat which causes a decrease in the effective latent heat inside the bag. We have considered two types of baryonic bags, Δ\Delta and Ω−\Omega^-. In both cases we have found that the bag constant without the quantum entropy almost does not change with the temperature and the quark chemical potential. The contribution from the quantum entropy to the equation of state clearly decreases the value of the bag constant.Comment: 7 pages, 2 figures (two parts each

    Transverse Energy per Charged Particle and Freeze-Out Criteria in Heavy-Ion Collisions

    Get PDF
    In relativistic nucleus-nucleus collisions the transverse energy per charged particle, E_T/N_ch, increases rapidly with beam energy and remains approximately constant at about 800 MeV for beam energies from SPS to RHIC. It is shown that the hadron resonance gas model describes the energy dependence, as well as the lack of centrality dependence, qualitatively. The values of E_T/N_ch are related to the chemical freeze-out criterium E/N about 1 GeV valid for primordial hadrons.Comment: 8 pages, 5 figure

    Fluctuations of Particle Yield Ratios in Heavy-Ion Collisions

    Full text link
    We study the dynamical fluctuations of various particle yield ratios at different incident energies. Assuming that the particle production yields in the hydronic final state are due to equilibrium chemical processes (γ=1\gamma=1), the experimental results available so far are compared with the hadron resonance gas model (HRG) taking into account the limited momentum acceptance in heavy-ion collisions experiments. Degenerated light and conserved strange quarks are presumed at all incident energies. At the SPS energies, the HRG with γ=1\gamma=1 provides a good description for the measured dynamical fluctuations in (K++K−)/(π++π−)(K^++K^-)/(\pi^++\pi^-). To reproduce the RHIC results, γ\gamma should be larger than one. We also studied the dynamical fluctuations of (p+pˉ)/(π++π−)(p+\bar{p})/(\pi^++\pi^-). It is obvious that the energy-dependence of these dynamical fluctuations is non-monotonic.Comment: 8 pages, 2 eps figures and 1 tabl
    • …
    corecore