63 research outputs found

    Role of RelA and SpoT in Burkholderia pseudomallei survival, biofilm formation and ceftazidime tolerance during nutritional stress

    Get PDF
    This is the author accepted manuscript.Burkholderia pseudomallei a saprophyte found in soil and stagnant water is the causative agent of human melioidosis, an often cause fatal disease. B. pseudomallei is intrinsically resistant to many antibiotics. The stringent response is a global bacterial adaptation process in response to nutritional limitation and is mediated by the alarmone (p)ppGpp, which is produced by two proteins, RelA and SpoT. In order to test whether the stringent response is involved in ceftazidime tolerance, biofilm formation, and bacterial survival in the soil microcosm, B. pseudomallei strain K96243 and its isogenic ΔrelA and ΔrelAΔspoT mutants were grown in rich and nutrient-limited media. In nutrient-limiting conditions, both the wild type and mutants were found to be up to 64-times more tolerant to ceftazidime than when grown in rich culture conditions. Moreover, the biofilm formation of all bacterial isolates tested were significantly higher under nutrient-limiting conditions than under nutrient-rich conditions. The ΔrelAΔspoT mutant produced less biofilm than its wild type or ΔrelA mutant under nutrient-limiting conditions. The survival of the ΔrelAΔspoT double mutant cultured in 1% moisture content soil was significantly decreased compared to the wild type and the ΔrelA mutant. Therefore, the RelA/SpoT protein family might represent a promising target for the development of novel antimicrobial agents to combat B. pseudomallei.This work was supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant no. PHD/0351/2551 to CA and ST), the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, through the Health Cluster (SHeP-GMS), and Khon Kaen University

    Drug susceptibility and biofilm formation of Burkholderia pseudomallei in nutrient-limited condition

    Get PDF
    Abstract. Burkholderia pseudomallei is the causative agent of melioidosis, which can form biofilms and microcolonies in vivo and in vitro. One of the hallmark characteristics of the biofilm-forming bacteria is that they can be up to 1,000 times more resistant to antibiotics than their free-living counterpart. Bacteria also become highly tolerant to antibiotics when nutrients are limited. One of the most important causes of starvation induced tolerance in vivo is biofilm growth. However, the effect of nutritional stress on biofilm formation and drug tolerance of B. pseudomallei has never been reported. Therefore, this study aims to determine the effect of nutrient-limited and enriched conditions on drug susceptibility of B. pseudomallei in both planktonic and biofilm forms in vitro using broth microdilution method and Calgary biofilm device, respectively. The biofilm formation of B. pseudomallei in nutrient-limited and enriched conditions was also evaluated by a modified microtiter-plate test. Six isolates of ceftazidime (CAZ)-susceptible and four isolates of CAZ-resistant B. pseudomallei were used. The results showed that the minimum bactericidal concentrations of CAZ against B. pseudomallei in nutrient-limited condition were higher than those in enriched condition. The drug susceptibilities of B. pseudomallei biofilm in both enriched and nutrient-limited conditions were more tolerant than those of planktonic cells. Moreover, the quantification of biofilm formation by B. pseudomallei in nutrient-limited condition was significantly higher than that in enriched condition. These data indicate that nutrient-limited condition could induce biofilm formation and drug tolerance of B. pseudomallei

    Influence of the molybdenum cofactor biosynthesis on anaerobic respiration, biofilm formation and motility in Burkholderia thailandensis

    Get PDF
    types: Journal Article; Research Support, Non-U.S. Gov'tCopyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS.Elsevier. NOTICE: This is the author’s version of a work accepted for publication by Elsevier. Changes resulting from the publishing process, including peer review, editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Research in Microbiology, 2014, Vol. 165, Issue 1, pp. 41 – 49 DOI: 10.1016/j.resmic.2013.10.009Burkholderia thailandensis is closely related to Burkholderia pseudomallei, a bacterial pathogen and the causative agent of melioidosis. B. pseudomallei can survive and persist within a hypoxic environment for up to one year and has been shown to grow anaerobically in the presence of nitrate. Currently, little is known about the role of anaerobic respiration in pathogenesis of melioidosis. Using B. thailandensis as a model, a library of 1344 transposon mutants was created to identify genes required for anaerobic nitrate respiration. One transposon mutant (CA01) was identified with an insertion in BTH_I1704 (moeA), a gene required for the molybdopterin biosynthetic pathway. This pathway is involved in the synthesis of a molybdopterin cofactor required for a variety of molybdoenzymes, including nitrate reductase. Disruption of molybdopterin biosynthesis prevented growth under anaerobic conditions, when using nitrate as the sole terminal electron acceptor. Defects in anaerobic respiration, nitrate reduction, motility and biofilm formation were observed for CA01. Mutant complementation with pDA-17:BTH_I1704 was able to restore anaerobic growth on nitrate, nitrate reductase activity and biofilm formation, but did not restore motility. This study highlights the potential importance of molybdoenzyme-dependent anaerobic respiration in the survival and virulence of B. thailandensis.BBSRC studentship (C. A. Andreae

    Activation of the Innate Immune Response against DENV in Normal Non-Transformed Human Fibroblasts

    Get PDF
    In this work, we demonstrate that that both human whole skin and freshly isolated skin fibroblasts are productively infected with Dengue virus (DENV). In addition, primary skin fibroblast cultures were established and subsequently infected with DENV-2; we showed in these cells the presence of the viral antigen NS3, and we found productive viral infection by a conventional plaque assay. Of note, the infectivity rate was almost the same in all the primary cultures analyzed from different donors. The skin fibroblasts infected with DENV-2 underwent signaling through both TLR3 and RIG-1, but not Mda5, triggering up-regulation of IFNβ, TNFα, defensin 5 (HB5) and β defensin 2 (HβD2). In addition, DENV infected fibroblasts showed increased nuclear translocation of interferon (IFN) regulatory factor 3 (IRF3), but not interferon regulatory factor 7 IRF7, when compared with mock-infected fibroblasts. Our data suggest that fibroblasts might even participate producing mediators involved in innate immunity that activate and contribute to the orchestration of the local innate responses. This work is the first evaluating primary skin fibroblast cultures obtained from different humans, assessing both their susceptibility to DENV infection as well as their ability to produce molecules crucial for innate immunity

    Decreased Dengue Replication and an Increased Anti-viral Humoral Response with the use of Combined Toll-Like Receptor 3 and 7/8 Agonists in Macaques

    Get PDF
    Pathogenic versus protective outcomes to Dengue virus (DENV) infection are associated with innate immune function. This study aimed to determine the role of increased TLR3- and TLR7/8-mediated innate signaling after Dengue infection of rhesus macaques in vivo to evaluate its impact on disease and anti-DENV immune responses.TLR3 and TLR7/8 agonists (emulsified in Montanide) were administered subcutaneously to rhesus macaques at 48 hours and 7 days after DENV infection. The Frequency and activation of myeloid dendritic cells, plasmacytoid dendritic cells, and B cells were measured by flow cytometry while the serum levels of 14 different cytokines and chemokines were quantified. Adaptive immune responses were measured by DENV-specific antibody subtype measurements. Results showed that the combined TLR agonists reduced viral replication and induced the development of a proinflammatory reaction, otherwise absent in Dengue infection alone, without any clear signs of exacerbated disease. Specifically, the TLR-induced response was characterized by activation changes in mDC subsets concurrent with higher serum levels of CXCL-10 and IL-1Ra. TLR stimulation also induced higher titers of anti-DENV antibodies and acted to increase the IgG2/IgG1 ratio of anti-DENV to favor the subtype associated with DENV control. We also observed an effect of DENV-mediated suppression of mDC activation consistent with prior in vitro studies.These data show that concurrent TLR3/7/8 activation of the innate immune response after DENV infection in vivo acts to increase antiviral mechanisms via increased inflammatory and humoral responses in rhesus macaques, resulting in decreased viremia and melioration of the infection. These findings underscore an in vivo protective rather than a pathogenic role for combined TLR3/7/8-mediated activation in Dengue infection of rhesus macaques. Our study provides definitive proof-of-concept into the mechanism by which DENV evades immune recognition and activation in vivo

    Identification of a predicted trimeric autotransporter adhesin required for biofilm formation of Burkholderia pseudomallei.

    Get PDF
    The autotransporters are a large and diverse family of bacterial secreted and outer membrane proteins, which are present in many Gram-negative bacterial pathogens and play a role in numerous environmental and virulence-associated interactions. As part of a larger systematic study on the autotransporters of Burkholderia pseudomallei, the causative agent of the severe tropical disease melioidosis, we have constructed an insertion mutant in the bpss1439 gene encoding an unstudied predicted trimeric autotransporter adhesin. The bpss1439 mutant demonstrated a significant reduction in biofilm formation at 48 hours in comparison to its parent 10276 wild-type strain. This phenotype was complemented to wild-type levels by the introduction of a full-length copy of the bpss1439 gene in trans. Examination of the wild-type and bpss1439 mutant strains under biofilm-inducing conditions by microscopy after 48 hours confirmed that the bpss1439 mutant produced less biofilm compared to wild-type. Additionally, it was observed that this phenotype was due to low levels of bacterial adhesion to the abiotic surface as well as reduced microcolony formation. In a murine melioidosis model, the bpss1439 mutant strain demonstrated a moderate attenuation for virulence compared to the wild-type strain. This attenuation was abrogated by in trans complementation, suggesting that bpss1439 plays a subtle role in the pathogenesis of B. pseudomallei. Taken together, these studies indicate that BPSS1439 is a novel predicted autotransporter involved in biofilm formation of B. pseudomallei; hence, this factor was named BbfA, Burkholderia biofilm factor A

    In vitro susceptibility of Burkholderia pseudomallei to antimicrobial peptides

    No full text
    Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to many antibiotics, resulting in high mortality rates of 19% in Australia and even 50% in Thailand. Antimicrobial peptides (AMPs) possess potent broad-spectrum bactericidal activities and are regarded as promising therapeutic alternatives in the fight against resistant microorganisms. Moreover, these peptides may also affect inflammation, immune activation and wound healing. In this study, the in vitro activities of 10 AMPs, including histatin 5 and histatin variants, human cathelicidin peptide LL-37 and lactoferrin peptides, against 24 isolates of B. pseudomallei were investigated. The results showed that the antibacterial activities of the individual peptides depended on peptide dose and bacterial isolate. Among the 10 peptides tested, LL-37 exhibited the most effective killing activity. The smooth type A lipopolysaccharide (LPS) phenotype B. pseudomallei appeared to be more susceptible than those expressing the smooth type B LPS and the rough type LPS. Four isolates of B. pseudomallei shown to be resistant to ceftazidime and trimethoprim/sulfamethoxazole were also highly susceptible to LL-37. These data indicate that LL-37 possesses antimicrobial activity against all isolates independent of the LPS phenotype and is therefore a promising peptide to combat B. pseudomallei infections
    • …
    corecore