326 research outputs found

    The visual system in teleost fishes

    Get PDF

    Ultrasound detection by clupeiform fishes

    Get PDF

    Pure tone thresholds in nine species of marine teleosts

    Get PDF
    p. 179-239 : ill. ; 27 cm.Includes bibliographical references (p. 235-239)

    A scanning electron microscopic study of the sacculus and lagena in the ears of fifteen species of teleost fishes

    Full text link
    The ulstrastructure of the saccular and lagenar maculae were studied in 15 species of teleost fishes, using the scanning electron microscope. Particular attention was paid to hair cell orientation patterns, composition of the ciliary bundles on the hair cells, hair cell distributions, and supporting cell types. The hair cells on both otolithic organs are divided into several groups with all of the hair cells in each group oriented in the same direction. The posterior region of the saccular macula in all species had dorsally oriented hair cells on the dorsal half of the macula and ventrally oriented hair cells on the ventral half. The cells on the anterior end of the macula were oriented anteriorly and posteriorly, with the posterior group, in most species, being on the dorsal half of the anterior region of the macula. There was considerable inter-specific variation upon this basic pattern. Inter-specific variation on the lagenar macula was considerably less than on the saccular macula. The basic pattern in all of the species includes one dorsal cell group and one ventral cell group. There are four more-or-less discrete ciliary bundles, each varying in the relative size of the kinocilia and stereocilia. Intermediary forms were also observed, making it difficult to differentiate ciliary bundles in some instances. It was apparent, however, that several of the ciliary bundles were found in particular macular regions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50266/1/1051530306_ftp.pd

    Quantifying parameters of bottlenose dolphin signature whistles

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Marine Mammal Science 25 (2009): 976-986, doi:10.1111/j.1748-7692.2009.00289.x.Bottlenose dolphins (Tursiops truncatus) produce individually distinctive vocalizations called signature whistles, first described by Melba and David Caldwell (1965). The Caldwells observed that isolated, captive dolphins produced whistles with individually distinctive frequency contours, or patterns of frequency changes over time, and hypothesized that these whistles were used to transmit identity information (Caldwell and Caldwell 1965; Caldwell et al. 1990). Since the Caldwell’s work with isolated, captive dolphins, several studies have documented signature whistles in a variety of contexts, including free-swimming captive dolphins (e.g., Janik and Slater 1998; Tyack 1986), briefly restrained wild dolphins (e.g., Sayigh et al. 1990, 2007, Watwood et al. 2005), and free-ranging wild dolphins (e.g., Watwood 2003; Watwood et al. 2004, 2005; Buckstaff 2004; Cook et al. 2004). Janik and Slater (1998) demonstrated that signature whistles are used to maintain group cohesion, thus supporting the Caldwells’ hypothesis. Janik et al. (2006) verified experimentally that bottlenose dolphins respond to signature whistles produced by familiar conspecifics even after voice featured have been removed, reinforcing the notion that the contour of a signature whistle carries identity information.This work was funded by a Protect Wild Dolphins grant from the Harbor Branch Oceanographic Institution, issued to LSS and RSW

    The marine soundscape of the Perth Canyon

    Get PDF
    The Perth Canyon is a submarine canyon off Rottnest Island in Western Australia. It is rich in biodiversity in general, and important as a feeding and resting ground for great whales on migration. Australia's Integrated Marine Observing System (IMOS) has moorings in the Perth Canyon monitoring its acoustical, physical and biological oceanography. Data from these moorings, as well as weather data from a near-by Bureau of Meteorology weather station on Rottnest Island and ship traffic data from the Australian Maritime Safety Authority were correlated to characterise and quantify the marine soundscape between 5 and 3000. Hz, consisting of its geophony, biophony and anthrophony. Overall, biological sources are a strong contributor to the soundscape at the IMOS site, with whales dominating seasonally at low (15-100. Hz) and mid frequencies (200-400. Hz), and fish or invertebrate choruses dominating at high frequencies (1800-2500. Hz) at night time throughout the year. Ships contribute significantly to the 8-100. Hz band at all times of the day, all year round, albeit for a few hours at a time only. Wind-dependent noise is significant at 200-3000. Hz; winter rains are audible underwater at 2000-3000. Hz. We discuss how passive acoustic data can be used as a proxy for ocean weather. Passive acoustics is an efficient way of monitoring animal visitation times and relative densities, and potential anthropogenic influences

    The African Cichlid Fish Astatotilapia burtoni Uses Acoustic Communication for Reproduction: Sound Production, Hearing, and Behavioral Significance

    Get PDF
    Sexual reproduction in all animals depends on effective communication between signalers and receivers. Many fish species, especially the African cichlids, are well known for their bright coloration and the importance of visual signaling during courtship and mate choice, but little is known about what role acoustic communication plays during mating and how it contributes to sexual selection in this phenotypically diverse group of vertebrates. Here we examined acoustic communication during reproduction in the social cichlid fish, Astatotilapia burtoni. We characterized the sounds and associated behaviors produced by dominant males during courtship, tested for differences in hearing ability associated with female reproductive state and male social status, and then tested the hypothesis that female mate preference is influenced by male sound production. We show that dominant males produce intentional courtship sounds in close proximity to females, and that sounds are spectrally similar to their hearing abilities. Females were 2–5-fold more sensitive to low frequency sounds in the spectral range of male courtship sounds when they were sexually-receptive compared to during the mouthbrooding parental phase. Hearing thresholds were also negatively correlated with circulating sex-steroid levels in females but positively correlated in males, suggesting a potential role for steroids in reproductive-state auditory plasticity. Behavioral experiments showed that receptive females preferred to affiliate with males that were associated with playback of courtship sounds compared to noise controls, indicating that acoustic information is likely important for female mate choice. These data show for the first time in a Tanganyikan cichlid that acoustic communication is important during reproduction as part of a multimodal signaling repertoire, and that perception of auditory information changes depending on the animal's internal physiological state. Our results highlight the importance of examining non-visual sensory modalities as potential substrates for sexual selection contributing to the incredible phenotypic diversity of African cichlid fishes
    • …
    corecore