1	Quantifying parameters of bottlenose dolphin
2	signature whistles
3	
4	H. Carter Esch
5	Woods Hole Oceanographic Institution
6	Biology Department, M.S. #33
7	Woods Hole, MA 02543, USA
8	E-mail: carter@whoi.edu
9	
10	Laela S. Sayigh
11	Woods Hole Oceanographic Institution
12	Biology Department, M.S. #50
13	Woods Hole, MA 02543, USA
14	E-mail: lsayigh@whoi.edu
15	
16	Randall S. Wells
17	Chicago Zoological Society
18	c/o Mote Marine Laboratory
19	Sarasota, FL 34236, USA
20	rwells@mote.org
21	
22	

23	Bottlenose dolphins (Tursiops truncatus) produce individually distinctive
24	vocalizations called signature whistles, first described by Melba and David Caldwell
25	(1965). The Caldwells observed that isolated, captive dolphins produced whistles with
26	individually distinctive frequency contours, or patterns of frequency changes over time,
27	and hypothesized that these whistles were used to transmit identity information (Caldwell
28	and Caldwell 1965; Caldwell et al. 1990). Since the Caldwell's work with isolated,
29	captive dolphins, several studies have documented signature whistles in a variety of
30	contexts, including free-swimming captive dolphins (e.g., Janik and Slater 1998; Tyack
31	1986), briefly restrained wild dolphins (e.g., Sayigh et al. 1990, 2007, Watwood et al.
32	2005), and free-ranging wild dolphins (e.g., Watwood 2003; Watwood et al. 2004, 2005;
33	Buckstaff 2004; Cook et al. 2004). Janik and Slater (1998) demonstrated that signature
34	whistles are used to maintain group cohesion, thus supporting the Caldwells' hypothesis.
35	Janik et al. (2006) verified experimentally that bottlenose dolphins respond to signature
36	whistles produced by familiar conspecifics even after voice featured have been removed,
37	reinforcing the notion that the contour of a signature whistle carries identity information.
38	

Signature whistle parameters vary by age (Caldwell *et al.* 1990; Esch *et al.* in press), sex (Sayigh *et al.* 1995, Esch *et al.* in press), and context (Caldwell *et al.* 1990;
Janik *et al.* 1994; Watwood *et al.* 2005; Esch *et al.* in press). Young dolphins (both male and female) have higher signature whistle rates than adults, but whistle rate decreases more quickly with age in males than females (Caldwell *et al.* 1990, Esch *et al.* in press). Adult dolphins produce more loops per whistle (and therefore longer whistles) than infants and

45	sub-adults (Caldwell et al. 1990). Caldwell et al. (1990) found that certain parameters of
46	signature whistles (e.g., frequency, number of loops and duration of loops) appeared to be
47	closely related to the level of arousal of an individual dolphin; however, these differences
48	were not consistent across individuals. Esch et al. (in press) found that whistle rate and the
49	number of loops produced per whistle varied by context, and hypothesized that increases in
50	these whistle parameters may be indicative of stress in bottlenose dolphins. Similarly,
51	Janik et al. (1994) found that 9 of 14 signature whistle frequency and time parameters
52	differed significantly between isolation and interaction conditions, supporting the existence
53	of both identity and context related information in signature whistles. However, despite
54	this variability in an individual dolphin's signature whistle parameters, the overall contour
55	usually remains highly stereotyped for at least a decade (Caldwell et al. 1990; Sayigh et al.
56	1990; Janik and Slater 1994; Esch et al. in press).
57	
58	
59	As described above, signature whistles may consist of a single element (or loop;
60	e.g., FB24, FB35, Figure 1), or variable numbers of repeated loops, which may or may not

be connected (*e.g.*, connected, FB20, FB118; disconnected, FB138, FB220, Figure 1).

62 Some multi-looped whistles also contain an introductory and/or terminal loop, which differ

63 in contour from the central loops (e.g., FB48, FB97, Figure 1; Caldwell et al. 1973, 1990,

64 Sayigh *et al.* 1990). For whistles with multiple disconnected loops some studies have

65 considered each loop repetition as a separate whistle (*e.g.*, Schevill and Watkins 1962;

⁶⁶ Tavolga 1968; McCowan and Reiss 2001), while others have distinguished loops from

67 whistles (e.g., Caldwell et al. 1973, 1990, Sayigh et al. 1990, 2007; Buckstaff 2004;

68	Watwood 2003; Watwood et al. 2005; Esch et al. in press). In the present study, we
69	hypothesized that loops are separated by highly stereotyped time intervals, and that
70	stereotyped loops and silences between loops both play a part in the production of a unique
71	signal (based on Caldwell et al. 1990). The presence of an introductory and/or terminal
72	loop (e.g., Figure 1: FB25, FB48, FB54, FB84, FB97, and FB220) supports the idea that
73	multiple disconnected loops should be considered part of the same unit if separated by
74	stereotyped silences (Caldwell et al. 1973, 1990). It is important that studies of dolphin
75	communication are consistent in how multi-looped whistles are treated; otherwise studies
76	that include this type of signal are difficult to compare. Thus, a goal of this study was to
77	quantify inter-loop intervals in stereotyped sequences of disconnected loops, in order to
78	test the hypothesis that these intervals are shorter and more consistent (less variable) than
79	are the intervals between successive whistles.

A second goal of this study was to quantify the acoustic parameters of signature 81 82 whistles (especially maximum frequency, but measurements were also made of minimum frequency, and overall duration) to update the documented ranges of these values. Many 83 studies of dolphin signature whistles utilized recording equipment with upper frequency 84 85 cut-offs at or below 24 kHz, and were thus unable to measure higher frequencies (e.g., Azevedo and Oliveira 2007, Dreher 1961, Evans and Prescott 1962, Sayigh et al. 1990, 86 Steiner 1981, Tyack 1986, Wang et al. 1995). Currently, the value of 24 kHz reported by 87 88 Caldwell et al. (1990) is the highest maximum frequency for signature whistles in the

89 literature. We report values for the fundamental frequency of signature whistles and do not
90 include harmonics or other types of vocalizations (*e.g.*, echolocation).

91

92 Recordings of long-term resident bottlenose dolphins from brief capture-release 93 events in Sarasota Bay, Florida (Scott et al. 1990; Wells 1991, 2003; Wells et al. 2004), have been collected over a period of 34 years (1975-2008), and many dolphins have been 94 95 recorded multiple times (maximum = 15, mean = 3.3). Custom-built suction cup hydrophones were placed directly on the head of each individual, allowing researchers to 96 97 unequivocally identify the vocalizing dolphin. The hydrophones were developed and built 98 at the Woods Hole Oceanographic Institution (WHOI; circuitry described in Tyack 1985), and were equipped with 1-2 kHz high-pass filters, above which their frequency response 99 was flat to 25 kHz. The hydrophones were not calibrated because amplitude values were 100 101 not being measured. Whistles were recorded onto either Marantz PMD-430 or Sony TC-102 D5M stereo-cassette recorders (frequency response »30-20000 Hz, digitization sampling 103 rate 96 kHz, 24bit), Panasonic AG-6400 or AG-7400 video-cassette recorders (frequency 104 response »20-32000 Hz, digitization sampling rate 96 kHz, 24bit), or a Sound Devices 744-T digital recorder (frequency response 10-48000 Hz, sampling rate 96 kHz, 24 bit). 105 106 The predominant whistle produced by an animal during a brief capture-release event is 107 defined as its signature whistle. Other whistles produced during these recording sessions are called non-signature whistles. The Sarasota Dolphin Community Signature Whistle 108 Catalogue (Sayigh, unpublished data) currently contains signature whistles from 205 109 110 dolphins. Since most dolphins in Sarasota Bay have been captured and released more than

once, signature whistle identifications for all dolphins included in this study have beenconfirmed by reviewing multiple recordings for an individual animal.

114	Twenty whistles produced by each of 28 different dolphins (12 male, 16 female)
115	were randomly selected from all whistles produced by an individual dolphin in a single
116	recording session during brief capture-release events between 1988 and 2001 in Sarasota
117	Bay, FL. These randomly selected whistles were primarily signatures, but in some cases
118	non-signatures were selected. Dolphins were chosen so a variety of different types of
119	signature whistle were represented, including:
120	
121	1. Loops sometimes connected, sometimes not; may vary in number and/or contour (4 of
122	28 dolphins; e.g., FB146, FB151, FB166, FB186, Figure 1);
123	2. Loops always disconnected, may vary in number and/or contour (14 of 28 dolphins; e.g.,
124	FB7, FB9, FB11, FB25, FB38, FB48, FB54, FB55, FB84, FB90, FB97, FB101, FB138,
125	FB220. Figure 1);
126	3. Loops always connected, may vary in number and/or contour (8 of 28 dolphins; e.g.,
127	FB3, FB20, FB67, FB105, FB118, FB122, FB140, FB163, Figure 1);
128	4. No repetitive loop structure (2 of 28 dolphins; e.g., FB24, FB35, Figure 1). In the
129	recording library of 205 dolphins used as a resource in this study, the four whistle types
130	listed above were represented as follows: type 1, 4.3%, type 2, 39.9%, type 3, 33.7%, and
131	type 4, 22.1%.

133	A continuous whistle was classified as multi-looped (<i>i.e.</i> , consisting of multiple
134	connected repeated elements) based on previous visual classification of a large dataset of
135	whistles by human judges (Sayigh et al. 2007). To develop a criterion for classifying
136	whistle elements as disconnected loops or as separate whistles, inter-element intervals were
137	measured during 30 min of a recording for each of 5 dolphins (FB2, FB15, FB33, FB38,
138	FB101). None of these recordings were included in the data set used for later analyses.
139	The mean number of whistle elements in these recordings was 461 ± 315 . Individual
140	elements were assigned to a single whistle (i.e., a whistle with multiple disconnected
141	loops) using the criterion defined by Janik and Slater (1998): elements separated by 0.5
142	seconds or less were considered loops in a single whistle. Whistle classification using this
143	criterion agreed with visual classification in all cases (Table 1); therefore, this criterion
144	(i.e., elements that occurred within 0.5 sec of each other) was used to classify whistle
145	elements as loops vs. separate whistles in the current study.

When possible, a single recording session for each dolphin was analyzed utilizing 147 Signal/RTSD (Version 3.0, Engineering Design, Belmont, MA) or Avisoft-SASLab Pro 148 3.2 (Raimund Specht, Berlin, Germany), which are software packages that display real-149 150 time spectrograms. Every whistle produced during the chosen recording session was noted and numbered, with a minimum sample size of 200 whistles for each dolphin. In six cases, 151 200 whistles did not occur in the recording session chosen. In these cases, an additional 152 153 session was also analyzed in order to reach a minimum of 200 whistles. Sample sizes ranged from 201 to 2,144 whistles per dolphin (mean = 308 ± 416). A table of 20 random 154

numbers was generated (in Microsoft Excel) for each dolphin, based on its total quantity of
whistles. These 20 randomly selected whistles were then subjected to further analyses. For
six dolphins in this study, non-signature whistles were present in the random sample;
however, parameter measurements for signature and non-signature whistles are presented
separately. Only signature whistles were included in inter-loop and inter-whistle interval
comparisons.

161

Inter-loop intervals can be distinguished from inter-whistle intervals on the basis of 162 significant differences in duration and variability. Inter-loop intervals in stereotyped 163 164 sequences of disconnected loops were significantly shorter (Table 2, mean inter-loop interval = 0.10 s, mean inter-whistle interval = 17.1 s; paired t-test, df = 15, P = 0.01) and 165 less variable (F-test, Table 2) than intervals between successive whistles. Standard 166 deviations ranged from 0.01 to 0.06 sec for inter-loop intervals versus 1.74 to 163.17 s for 167 inter-whistle intervals. Coefficients of variation (CV, calculated as the ratio of standard 168 169 deviation to the mean) ranged from 0.09 to 0.77 for inter-loop intervals versus 0.63 to 2.34 170 for inter-whistle intervals. Inter-loop interval values were more normally distributed while inter-whistle interval values were logarithmically distributed (Figure 2 a, b). This 171 172 difference should be even more pronounced in contexts other than capture-release, when 173 whistle rates are much lower (*i.e.*, inter-whistle intervals are longer; Esch *et al.* in press). 174 These different distributions and resulting difference in variances between the two groups 175 support the conclusion that inter-loop intervals are significantly less variable than interwhistle intervals, and may be an important component of signature whistle stereotypy. 176

178	Means, standard deviations, and CV values for frequency maxima and minima, and
179	duration of each dolphin's signature whistle are presented in Table 3. Values for the 12
180	non-signature whistles included in the random sample are also shown. Mean maximum
181	frequencies for signature whistles ranged from 9.3 to 27.3 kHz, with the latter exceeding
182	the published upper range for bottlenose dolphin signature whistles (24 kHz, Caldwell et
183	al. 1990; 17.8 kHz, Janik et al. 1994; 23.48 kHz, Buckstaff 2004). Mean minimum
184	frequencies for signature whistles ranged from 3 to 13.3 kHz, and durations ranged from
185	0.5 - 2.3 s, similar to values reported in other studies.
186	
187	These results indicate that signature whistles have a greater range of frequencies
188	than was previously reported, due to the increased maximum frequency value presented
189	here. Variability in maximum or minimum frequencies may be caused by an introductory
190	or terminal loop, such as a final upsweep or downsweep that tails off at a different
191	frequency from one whistle to another (e.g., FB48, FB54, FB97, FB105, Figure 1).
192	Coefficients of variation were often higher for dolphins that produced signature whistles
193	with a variable introductory or terminal loop (Figure 1, Table 3, FB48, FB54, FB97,
194	FB105). While several dolphins showed higher CV values for maximum than minimum
195	frequency (Table 3, FB25, FB105), others showed the reverse pattern (Table 3, FB55,
196	FB90, FB122). Thus, perhaps one frequency parameter (maximum or minimum) plays a
197	more consistent role in signature whistle stereotypy in a given individual.
198	

199	Bottlenose dolphin whistle parameters have been reported in multiple studies,
200	although few studies distinguish between signature and non-signature whistles. With the
201	exception of maximum frequency, our findings fall within previously published ranges.
202	Caldwell et al. (1990) reported maximum frequencies for bottlenose dolphin signature
203	whistles ranging from $8 - 24$ kHz, with minimum frequencies ranging from $1 - 9$ kHz.
204	Signature whistle duration ranged from $0.2 - 2.1$ s (Caldwell et al. 1990). Janik et al.
205	(1994) documented signature whistle parameters for a single captive bottlenose dolphin in
206	multiple contexts (minimum frequency: 4 kHz, maximum frequency: 17.8 kHz, duration
207	range: 0.13 - 0.18 s). Buckstaff (2004) reported signature whistle parameters for dolphins
208	in Sarasota Bay, Florida, as part of a study on the effects of watercraft activity on acoustic
209	behavior (frequency range: $2.91 - 23.48$ kHz, duration range: $0.10 - 4.11$ s). Wang et al.
210	(1995) determined whistle (combined signature and non-signature) parameters for
211	bottlenose dolphins in Argentina, reporting frequencies ranging from $1.17 - 21.6$ kHz, and
212	a mean duration of 1.14 s. Azevedo and Oliviero (2007) documented characteristics of
213	whistles from a resident population of bottlenose dolphins in southern Brazil (minimum
214	frequency range: 1.2 – 17.2 kHz, maximum frequency range: 3.6 – 22.3 kHz, duration
215	range: $0.048 - 2.458$ s). Finally, in a recent study of geographic variation in bottlenose
216	dolphin whistles (combined signature and non-signature), May-Collado and Wartzok
217	(2008) provide an extensive review of whistle parameters for bottlenose dolphins in the
218	Atlantic (minimum frequency range: 1.6 kHz – 18.92 kHz, maximum frequency range: 1.7
219	kHz – 28.48 kHz, duration range: 0.005 – 1.3 s). May-Collado and Wartzok (2008) report
220	a higher maximum frequency than our study; however, our study focuses only on signature

whistles while May-Collado and Wartzok (2008) do not distinguish among whistle types.
Therefore, our study is the first to extend the frequency range of signature whistles above
24 kHz.

224

225 Caldwell et al. (1990) were the first to suggest that "rather than repeating a constant 226 section of whistle, dolphins[s] [may] repeat both a section of whistle and an interval of 227 silence", and that those intervals may be highly consistent (although inter-loop interval values were not presented in their study). Our results indicate that inter-loop intervals can 228 229 be quantitatively distinguished from inter-whistle intervals, and that inter-loop durations 230 are much more consistent than inter-whistle durations for dolphins that produced multiple 231 disconnected loops. While variations in frequency contour provide one mechanism for creating an individually distinctive whistle, the possible conformations are finite. For 232 233 whistles with multiple disconnected loops, the stereotyped silence between loops may 234 serve as another characteristic by which individual dolphins can distinguish themselves uniquely. In addition, the presence of a characteristic introductory or terminal loop in 235 236 some signature whistles implies that the series of elements is produced as a punctuated 237 unit. The results of this study indicate that it is appropriate to consider these loops as components of a single whistle, rather than as separate whistles. 238

- 239
- 240
- 241
- 242
- 243

ACKNOWLEDGEMENTS

246	We would like to thank Dolphin Quest, the National Marine Fisheries Service, Mote
247	Marine Laboratory, and the Chicago Zoological Society for support of capture-release
248	operations. Thanks to the dedicated staff, students, and volunteers whose efforts ensured
249	the success and safety of the capture-release operations. We would also like to thank three
250	anonymous reviewers, whose suggestions greatly improved this manuscript. This work
251	was funded by a Protect Wild Dolphins grant from the Harbor Branch Oceanographic
252	Institution, issued to LSS and RSW. The research was conducted under NMFS Scientific
253	Research Permits No. 417, 655, 945, and 522-1569 issued to RSW, and approvals by the
254	Institutional Animal Care and Use Committees of both Mote Marine Laboratory and the
255	University of North Carolina Wilmington.
256	
257	
258	
259	
260	
261	
262	

263	LITERATURE CITED
264	
265	AZEVEDO, A.F., and A.M. OLIVEIRA. 2007. Characteristics of whistles from
266	resident bottlenose dolphins (Tursiops truncatus) in southern Brazil.
267	Journal of the Acoustical Society of America 121:2978-2983.
268	
269	BUCKSTAFF, K.C. 2004. Effects of watercraft noise on the acoustic behavior of
270	bottlenose dolphins, Tursiops truncatus, in Sarasota Bay, Florida. Marine Mammal
271	Science 20:709-725.
272	
273	CALDWELL, M.C., and D.K. CALDWELL. 1965. Individual whistle contours in
274	bottlenosed dolphins (Tursiops truncatus). Nature 207:434-435.
275	
276	CALDWELL, M.C., D.K. CALDWELL, and J.F. MILLER. 1973. Statistical evidence for
277	individual signature whistles in the spotted dolphin, Stenella plagiodon. Cetology 16:1-
278	21.
279	
280	CALDWELL, M.C., D.K. CALDWELL, and P.L. TYACK. 1990. Review of the
281	signature-whistle hypothesis for the Atlantic bottlenose dolphin. Pages 199-234 in S.
282	Leatherwood and R.R. Reeves, eds. The Bottlenose Dolphin. Academic Press, New
283	York, NY.

285	COOK, M.L.H., L.S. SAYIGH, J.E. BLUM, and R.S. WELLS. 2004. Signature whistle
286	production in undisturbed free-ranging bottlenose dolphins (Tursiops truncatus).
287	Proceedings of the Royal Society, Series B271:1043-1049.
288	
289	DREHER, J.J. 1961. Linguistic considerations of porpoise sounds. Journal of the
290	Acoustical Society of America 33:1799-1800.
291	
292	ESCH, H.C., L.S. SAYIGH, J.E. BLUM, and R.S. WELLS. in press. Whistles as potential
293	indicators of stress in bottlenose dolphins (Tursiops truncatus). Journal of Mammology.
294	
295	EVANS, W.E., and J.H. PRESCOTT. 1962. Observations of the sound production
296	capabilities of the bottlenosed porpoise: A study of whistles and clicks. Zoologica
297	47:121-128.
298	
299	JANIK, V.M., G. DEHNHARDT, and D. TODT. 1994. Signature whistle
300	variations in a bottlenosed dolphin, Tursiops truncatus. Behavioral Ecology and
301	Sociobiology 35:243-248.
302	
303	JANIK, V.M. and P.J.B. SLATER. 1998. Context-specific use suggests that bottlenose
304	dolphin signature whistles are cohesion calls. Animal Behavior 56:829-838.
305	
306	JANIK, V.M., L.S. SAYIGH, and R.S. WELLS. 2006. Signature whistle shape conveys

307	identity information to bottlenose dolphins. Proceedings of the National Academy of
308	Sciences 103:8293-8297.
309	
310	MAY-COLLADO, L.J., and D. WARTZOK. 2008. A Comparison of bottlenose dolphin
311	whistles in the Atlantic ocean: factors promoting whistle variation. Journal of
312	Mammalogy 89:1229-1240.
313	
314	MCCOWAN, B., and D. REISS. 2001. The fallacy of "signature whistles" in bottlenose
315	dolphins: a comparative perspective of "signature information" in animal vocalizations.
316	Animal Behavior 62:1151-1162.
317	
318	SAYIGH, L.S., P.L. TYACK, R.S. WELLS, and M.D. SCOTT. 1990. Signature whistles
319	of free-ranging bottlenose dolphins, Tursiops truncatus: Stability and mother-offspring
320	comparisons. Behavioral Ecology and Sociobiology 26:247-260.
321	
322	SAYIGH, L.S., P.L. TYACK, R.S WELLS, M.D. SCOTT, and A.B. IRVINE. 1995. Sex
323	differences in signature whistle production of free-ranging bottlenose dolphins, Tursiops
324	truncatus. Behavioral Ecology and Sociobiology 36:171-177.
325	
326	SAYIGH, L. S., H.C. ESCH, R.S. WELLS, and V.M. JANIK. 2007. Facts about
327	signature whistles of bottlenose dolphins, Tursiops truncatus. Animal Behavior 74:1631-
328	1642.

330	SCHEVILL, W.E., and W.A. WATKINS. 1962. "Whale and Porpoise Voices." Woods
331	Hole Oceanographic Institution, Woods Hole, Massachusetts. Phonograph record and 24-
332	page booklet.
333	
334	SCOTT, M.D., R.S. WELLS, and A.B. IRVINE. 1990. A long-term study of bottlenose
335	dolphins on the west coast of Florida. Pp. 235-244 in The Bottlenose Dolphin (S.
336	Leatherwood and R.R. Reeves, eds.). Academic Press, New York.
337	
338	STEINER, W. 1981. Species-specific differences in pure tonal whistle vocalizations of
339	five western North Atlantic dolphin species. Behavioral Ecology and Sociobiology
340	9:241-246.
341	
342	TAVOLGA, W.N. 1968. Marine animal data atlas. Naval Training Device Center, Tech.
343	Rep., NAVTRADEVCEN 1212-2:i-x, 1-239.
344	
345	TYACK, P.L. 1985. An optical telemetry device to identify which dolphin produces a
346	sound. Journal of the Acoustical Society of America 78:1892-1895.
347	
348	TYACK, P.L. 1986. Whistle repertoires of two bottlenosed dolphins, Tursiops
349	truncatus: Mimicry of signature whistles? Behavioral Ecology and Sociobiology
350	18:251-257.

352	WANG, D., WÜRSIG, B., and EVANS, W.E. 1995. Whistles of bottlenose dolphins:
353	Comparisons among populations. Aquatic Mammals 21:65-77.
354	
355	WATWOOD, S.L. 2003. Whistle use and whistle sharing by allied male bottlenose
356	dolphins, Tursiops truncatus. Ph.D. thesis, Woods Hole. 227 pp.
357	
358	WATWOOD, S.L., P.L. TYACK, and R.S. WELLS. 2004. Whistle sharing in paired male
359	bottlenose dolphins, Tursiops truncatus. Behavioral Ecology and Sociobiology 55:531-
360	543.
361	
362	WATWOOD, S.L., E.C.G. OWEN, P.L. TYACK, and R.S. WELLS. 2005. Signature
363	whistle use by temporarily restrained and free-swimming bottlenose dolphins, Tursiops
364	truncatus. Animal Behavior 69:1373-1386.
365	
366	WELLS, R.S. 1991. The role of long-term study in understanding the social structure of a
367	bottlenose dolphin community. Pages 199-225 in K. Pryor and K.S. Norris, eds.
368	Dolphin Societies: Discoveries and Puzzles. Univ. of California Press, Berkeley, CA.
369	
370	WELLS, R.S. 2003. Dolphin social complexity: Lessons from long-term study and life
371	history. Pages 32-56 in F.B.M. de Waal and P.L. Tyack, eds. Animal Social Complexity:
372	Intelligence, Culture, and Individualized Societies. Harvard University Press,

373	Cambridge,	MA.
-----	------------	-----

- 375 Wells, R.S., H.L. Rhinehart, L.J. Hansen, J.C. Sweeney, F.I. Townsend, R.
- 376 STONE, D. CASPER, M.D. SCOTT, A.A. HOHN, and T.K. ROWLES. 2004.
- 377 Bottlenose dolphins as marine ecosystem sentinels: Developing a health monitoring
- 378 system. EcoHealth 1:246-254.

- 394 Figure and Table legends

396	Figure 1. Spectrograms of the signature whistle for each of 28 dolphins. Frequency (kHz)
397	is on the y-axis and time (s) is on the x-axis. Identical time and frequency scaling was
398	used among all signature whistle exemplars.
399	
400	Figure 2 (a, b). Inter-loop ($n = 521$) and inter-whistle ($n = 290$) interval distributions.
401	Intervals are shown in seconds (note different scales).
402	
403	Table 1. Results of transition matrix (TM) and visual classifications (VC) of disconnected
404	element whistle membership.
405	
406	Table 2. Mean \pm SD (CV) inter-loop and inter-whistle durations(s) for each dolphin. CV
407	values were calculated as the ratio of the SD to the mean. F-tests comparing inter-loop and
408	inter-whistle variance values were all significant at $P < 0.001$.
409	
410	Table 3. Means, standard deviations (SD), and coefficients of variation (CV) for 20
411	whistles from each of the 28 dolphins. Non-signature whistle values are shown for six
412	dolphins for which the 20 randomly selected whistles included non-signature whistles (*).
413	
414	
415	

Animal	# of elements	# of whistles: TM	# of whistles: VC
FB2	862	442	442
FB15	641	319	319
FB33	396	137	137
FB38	64	28	28
FB101	340	147	147

418	Table	1

	Inter-loop duration	Inter-whistle duration	
Animal	\pm SD (CV)	\pm SD (CV)	F
FB7	0.12 ± 0.01 (0.09)	15.40 ± 12.21 (0.79)	1.4×10^{6}
FB9	$0.13 \pm 0.04 \; (0.31)$	8.09 ± 10.96 (1.35)	7.5×10^4
FB11	$0.07 \pm 0.02 \; (0.31)$	8.14 ± 11.02 (1.35)	3.0×10^4
FB25	$0.07 \pm 0.02 \; (0.30)$	$6.28 \pm 14.91 \ (2.26)$	5.2×10^4
FB38	$0.09 \pm 0.01 \; (0.11)$	$10.76 \pm 10.97 \; (0.98)$	1.2×10^{6}
FB48	$0.05 \pm 0.01 \; (0.19)$	$29.33 \pm 26.15 \; (0.89)$	6.8x10 ⁶
FB54	$0.09 \pm 0.04 \; (0.46)$	$35.08 \pm 60.49 \ (1.72)$	2.3x106
FB55	$0.19 \pm 0.03 \ (0.14)$	$13.63 \pm 14.31 \ (1.05)$	2.3x10 ⁵
		107.24 ± 163.17	2.7x10 ⁸
FB84	0.11 ± 0.01 (0.12)	(1.52)	
FB90	$0.10 \pm 0.03 \; (0.27)$	6.34 ± 6.99 (1.10)	5.4×10^4
FB97	$0.07 \pm 0.01 \; (0.13)$	6.79 ± 15.88 (2.34)	2.5×10^{6}
FB101	$0.23 \pm 0.06 \; (0.24)$	$11.92 \pm 18.59 \ (1.56)$	5.9x10 ⁴
FB138	$0.11 \pm 0.01 \; (0.09)$	$2.75 \pm 1.74 \; (0.63)$	3.7×10^2
FB146	$0.06 \pm 0.02 \; (0.35)$	$3.41 \pm 2.66 \; (0.78)$	5.8×10^{1}
FB166	$0.07 \pm 0.01 \; (0.14)$	$5.25 \pm 3.86 \ (0.74)$	7.6×10^2
FB220	$0.09 \pm 0.01 \; (0.13)$	$2.95 \pm 2.59 \ (0.88)$	3.9x10 ²

437 Table 2

		Mean freq. max. ±	Mean freq. min. \pm SD	Mean duration \pm SD
Animal	Sex	SD (CV) kHz	(CV) kHz	(CV) sec
FB3	F	27.30 ± 1.87 (0.07)	13.33 ± 0.53 (0.04)	$2.3 \pm 0.69 \ (0.3)$
FB7	F	$12.86 \pm 0.48 \; (0.04)$	$4.21 \pm 0.30 \ (0.07)$	$1.3 \pm 0.23 \ (0.18)$
FB9	F	$11.21 \pm 0.53 \ (0.05)$	$6.24 \pm 0.41 \ (0.06)$	$0.8 \pm 0.15 \; (0.19)$
FB11	F	$23.50 \pm 0.78 \; (0.03)$	$5.86 \pm 0.20 \; (0.03)$	$1.3 \pm 0.47 \; (0.37)$
FB20	М	$11.60 \pm 1.40 \ (0.12)$	$5.90 \pm 0.49 \; (0.08)$	$1.2 \pm 0.55 \ (0.45)$
FB24	М	13.43 ± 1.55 (0.12)	$5.22\pm 0.88\;(0.17)$	$0.9\pm 0.16\ (0.18)$
FB25	F	22.17 ± 3.55 (0.16)	$7.18 \pm 0.18 \; (0.03)$	$1 \pm 0.3 \; (0.31)$
FB35	F	$15.07 \pm 1.98 \ (0.13)$	$5.43 \pm 0.51 \; (0.09)$	$0.9 \pm 0.22 \; (0.24)$
FB38	М	$14.95 \pm 1.01 \; (0.07)$	$5.31 \pm 0.28 \; (0.05)$	$0.7 \pm 0.19 \; (0.28)$
*		14.81	5.15	0.1
*		14.68	5.65	0.2
FB48	М	$14.42 \pm 0.30 \; (0.02)$	$4.14 \pm 0.91 \ (0.22)$	$0.9 \pm 0.34 \ (0.39)$
*		9.29	5.27	0.8
*		8.53	6.40	0.2
*		7.03	6.02	0.1
*		9.54	5.15	0.9
*		10.67	7.28	0.8
FB54	F	21.46 ± 3.65 (0.17)	$6.20 \pm 0.57 \ (0.09)$	$1.2 \pm 0.37 \ (0.31)$
*		15.06	5.40	0.1
FB55	F	$14.97 \pm 0.77 \; (0.05)$	$4.35 \pm 1.08 \ (0.25)$	$0.9\pm 0.26\ (0.29)$

*		14.85	6.40	0.1
FB67	F	$23.02 \pm 2.04 \; (0.09)$	$4.99 \pm 0.19 \; (0.04)$	$2 \pm 0.38 \ (0.19)$
FB84	F	$19.47 \pm 1.76 \ (0.09)$	$6.58 \pm 0.31 \; (0.05)$	$1.2 \pm 0.33 \; (0.27)$
FB90	F	$24.68 \pm 2.00 \; (0.08)$	$3.31 \pm 0.70 \ (0.21)$	$1.2 \pm 0.1 \; (0.08)$
FB97	F	$12.50 \pm 0.28 \; (0.02)$	$7.00 \pm 0.45 \; (0.06)$	$1.2 \pm 0.35 \ (0.3)$
FB101	F	$15.68 \pm 4.51 \; (0.29)$	$4.09\pm 0.88\;(0.21)$	$0.8 \pm 0.45 \; (0.53)$
FB105	F	11.56 ± 2.40 (0.21)	$4.76 \pm 0.42 \; (0.09)$	$0.5\pm 0.19~(0.35)$
FB118	М	17.55 ± 1.31 (0.07)	$6.73 \pm 0.66 \; (0.10)$	$1 \pm 0.42 \; (0.41)$
FB122	М	$14.21 \pm 0.26 \; (0.02)$	$5.28 \pm 1.66 \; (0.31)$	$0.8 \pm 0.16 \ (0.2)$
FB138	М	$20.74 \pm 1.54 \; (0.07)$	$10.09 \pm 0.28 \; (0.03)$	$1.7\pm 0.36\ (0.21)$
FB140	Μ	$18.62 \pm 0.71 \; (0.04)$	$4.09 \pm 0.55 \; (0.13)$	$1.8 \pm 0.67 \; (0.37)$
FB146	Μ	$15.40 \pm 1.42 \ (0.09)$	6.11 ± 1.21 (0.20)	$1.1\pm 0.36~(0.32)$
FB151	F	$15.34 \pm 2.10 \ (0.14)$	$5.23 \pm 0.66 \ (0.13)$	$0.7 \pm 0.14 \; (0.2)$
*		9.41	6.15	0.3
FB163	F	25.36 ± 1.72 (0.07)	$3.62\pm 0.68\;(0.19)$	$1.3 \pm 0.44 \; (0.33)$
*		9.54	3.39	0.5
*		15.18	2.13	0.9
FB166	Μ	$12.34 \pm 2.01 \ (0.16)$	$3.65 \pm 0.91 \; (0.25)$	$1.1\pm 0.36~(0.34)$
FB186	Μ	$22.65 \pm 1.86 \; (0.08)$	$4.26 \pm 0.16 \; (0.04)$	$0.7\pm 0.25\;(0.35)$
FB220	М	$9.34 \pm 0.35 \; (0.04)$	3.01 ± 0.32 (0.11)	1 ± 0.21 (0.21)

439 Table 3

0 .5 1 Time (s)

----- 0.5 s

0 20 40	FB3	FB7	FB9	FB11
0 20 40	FB20	FB24	FB25	FB35
) 0 20 40	FB38	FB48	FB54	FB55
Frequency (kHz 0 20 40	FB67	FB84	FB90	FB97
0 20 40	FB101	жето с то с	FB118	FB122
0 20 40	FB138	FB140	FB146	FB151
0 20 40	FB163	FB166	FB186	FB220

