249 research outputs found

    Impact of Tandem Repeats on the Scaling of Nucleotide Sequences

    Full text link
    Techniques such as detrended fluctuation analysis (DFA) and its extensions have been widely used to determine the nature of scaling in nucleotide sequences. In this brief communication we show that tandem repeats which are ubiquitous in nucleotide sequences can prevent reliable estimation of possible long-range correlations. Therefore, it is important to investigate the presence of tandem repeats prior to scaling exponent estimation.Comment: 14 Pages, 3 Figure

    Strategies for analyzing highly enriched IP-chip datasets

    Get PDF
    BACKGROUND: Chromatin immunoprecipitation on tiling arrays (ChIP-chip) has been employed to examine features such as protein binding and histone modifications on a genome-wide scale in a variety of cell types. Array data from the latter studies typically have a high proportion of enriched probes whose signals vary considerably (due to heterogeneity in the cell population), and this makes their normalization and downstream analysis difficult. RESULTS: Here we present strategies for analyzing such experiments, focusing our discussion on the analysis of Bromodeoxyruridine (BrdU) immunoprecipitation on tiling array (BrdU-IP-chip) datasets. BrdU-IP-chip experiments map large, recently replicated genomic regions and have similar characteristics to histone modification/location data. To prepare such data for downstream analysis we employ a dynamic programming algorithm that identifies a set of putative unenriched probes, which we use for both within-array and between-array normalization. We also introduce a second dynamic programming algorithm that incorporates a priori knowledge to identify and quantify positive signals in these datasets. CONCLUSION: Highly enriched IP-chip datasets are often difficult to analyze with traditional array normalization and analysis strategies. Here we present and test a set of analytical tools for their normalization and quantification that allows for accurate identification and analysis of enriched regions

    Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics

    Get PDF
    Forkhead box (FOX) transcription factors regulate a wide variety of cellular functions in higher eukaryotes, including cell cycle control and developmental regulation. In Saccharomyces cerevisiae, Forkhead proteins Fkh1 and Fkh2 perform analogous functions, regulating genes involved in cell cycle control, while also regulating mating-type silencing and switching involved in gamete development. Recently, we revealed a novel role for Fkh1 and Fkh2 in the regulation of replication origin initiation timing, which, like donor preference in mating-type switching, appears to involve long-range chromosomal interactions, suggesting roles for Fkh1 and Fkh2 in chromatin architecture and organization. To elucidate how Fkh1 and Fkh2 regulate their target DNA elements and potentially regulate the spatial organization of the genome, we undertook a genome-wide analysis of Fkh1 and Fkh2 chromatin binding by ChIP-chip using tiling DNA microarrays. Our results confirm and extend previous findings showing that Fkh1 and Fkh2 control the expression of cell cycle-regulated genes. In addition, the data reveal hundreds of novel loci that bind Fkh1 only and exhibit a distinct chromatin structure from loci that bind both Fkh1 and Fkh2. The findings also show that Fkh1 plays the predominant role in the regulation of a subset of replication origins that initiate replication early, and that Fkh1/2 binding to these loci is cell cycle-regulated. Finally, we demonstrate that Fkh1 and Fkh2 bind proximally to a variety of genetic elements, including centromeres and Pol III-transcribed snoRNAs and tRNAs, greatly expanding their potential repertoire of functional targets, consistent with their recently suggested role in mediating the spatial organization of the genome

    Computational system identification of continuous-time nonlinear systems using approximate Bayesian computation

    Get PDF
    In this paper, we derive a system identification framework for continuous-time nonlinear systems, for the first time using a simulation-focused computational Bayesian approach. Simulation approaches to nonlinear system identification have been shown to outperform regression methods under certain conditions, such as non-persistently exciting inputs and fast-sampling. We use the approximate Bayesian computation (ABC) algorithm to perform simulation-based inference of model parameters. The framework has the following main advantages: (1) parameter distributions are intrinsically generated, giving the user a clear description of uncertainty, (2) the simulation approach avoids the difficult problem of estimating signal derivatives as is common with other continuous-time methods, and (3) as noted above, the simulation approach improves identification under conditions of non-persistently exciting inputs and fast-sampling. Term selection is performed by judging parameter significance using parameter distributions that are intrinsically generated as part of the ABC procedure. The results from a numerical example demonstrate that the method performs well in noisy scenarios, especially in comparison to competing techniques that rely on signal derivative estimation

    Differential signaling to glycogen synthesis by the intracellular domain of the insulin versus the insulin-like growth factor-1 receptor

    Get PDF
    Insulin and insulin-like growth factor-1 (IGF-1) have similar cell-surface receptors yet subserve different physiological functions, To examine whether these differences relate to intrinsic signaling properties of the intracellular domains of their respective receptors, chimeric receptors were constructed using the extracellular domain of the neurotrophin-3 (NT-3) receptor, TrkC, and the intracellular domain of either the insulin receptor or the IGF-1 receptor, TrkC-IR (TIR) and TrkC-IGF-1R (TIGR) were stably expressed in 3T3-L1 cells, While TIR and TIGR cell lines expressing similar numbers of chimeric receptors showed a similar dose-response relationship in NT-3 stimulated DNA synthesis, NT-3 stimulated glycogen synthesis was greater in TIR than in TIGR cells (maximum TIGR response was 35% of maximum TIR response), Additionally, the concentration of NT-3 at which significant stimulation of glycogen synthesis was seen was 0.1 ng/ml in TIR and 1 ng/ml in TIGR cells, Basal levels of thymidine incorporation but not glycogen synthesis were consistently higher in TIR than in TIGR expressing cells, No detectable basal autophosphorylation of chimeric receptors was seen in any of the cell lines, However, exposure of cell lines to the phosphatase inhibitor bisperoxovanadate resulted in greater basal autophosphorylation of the TIR and endogenous murine IR than the TIGR and endogenous murine IGF-1R. Thus, in this system, the intracellular domain of the IR appears to couple more effectively to glycogen synthesis than that of the IGF-1R, whereas the intracellular domains of both receptors have a similar capacity to stimulate DNA synthesis

    Microevolution of Helicobacter pylori during prolonged infection of single hosts and within families

    Get PDF
    Our understanding of basic evolutionary processes in bacteria is still very limited. For example, multiple recent dating estimates are based on a universal inter-species molecular clock rate, but that rate was calibrated using estimates of geological dates that are no longer accepted. We therefore estimated the short-term rates of mutation and recombination in Helicobacter pylori by sequencing an average of 39,300 bp in 78 gene fragments from 97 isolates. These isolates included 34 pairs of sequential samples, which were sampled at intervals of 0.25 to 10.2 years. They also included single isolates from 29 individuals (average age: 45 years) from 10 families. The accumulation of sequence diversity increased with time of separation in a clock-like manner in the sequential isolates. We used Approximate Bayesian Computation to estimate the rates of mutation, recombination, mean length of recombination tracts, and average diversity in those tracts. The estimates indicate that the short-term mutation rate is 1.4×10−6 (serial isolates) to 4.5×10−6 (family isolates) per nucleotide per year and that three times as many substitutions are introduced by recombination as by mutation. The long-term mutation rate over millennia is 5–17-fold lower, partly due to the removal of non-synonymous mutations due to purifying selection. Comparisons with the recent literature show that short-term mutation rates vary dramatically in different bacterial species and can span a range of several orders of magnitude

    A análise econômico-ecológica de um agroecossistema no município de Paraty-RJ como ferramenta de planejamento e apoio à transição agroecológica.

    Get PDF
    A Metodologia de Análise Econômico-Ecológica de Agroecossistemas considera estratégias singulares nas dinâmicas socioecológicas de gestão na agricultura familiar invisibilizadas nos métodos convencionais de agricultura. A metodologia foi aplicada em um sistema agroecológico na região costa verde, estado do Rio de Janeiro, com objetivo realizar uma análise para viabilizar e fortalecer a produção na perspectiva da agroecologia. As etapas do método são: visita ao agroecossistema, entrevista semiestruturada, elaboração da linha do tempo e da modelização e análise econômica-ecológica. A família aposta na diversificação da produção como estratégia de comercialização. Identificou-se que maior parte dos insumos foi produzida internamente diminuindo custo e aumentando rentabilidade. Pode-se inferir que a estratégia de produção e de organização social adotada pela família permitiu a interação da produção econômica e reprodução ecológica do agroecossistema viabilizando a permanência da família na propriedade.Edição dos Anais do VI Congresso Latino-americano de Agroecologia; X Congresso Brasileiro de Agroecologia; V Seminário de Agroecologia do Distrito Federal e Entorno, Brasília, DF, set. 2017

    Anti-cancer effects and mechanism of actions of aspirin analogues in the treatment of glioma cancer

    Get PDF
    INTRODUCTION: In the past 25 years only modest advancements in glioma treatment have been made, with patient prognosis and median survival time following diagnosis only increasing from 3 to 7 months. A substantial body of clinical and preclinical evidence has suggested a role for aspirin in the treatment of cancer with multiple mechanisms of action proposed including COX 2 inhibition, down regulation of EGFR expression, and NF-κB signaling affecting Bcl-2 expression. However, with serious side effects such as stroke and gastrointestinal bleeding, aspirin analogues with improved potency and side effect profiles are being developed. METHOD: Effects on cell viability following 24 hr incubation of four aspirin derivatives (PN508, 517, 526 and 529) were compared to cisplatin, aspirin and di-aspirin in four glioma cell lines (U87 MG, SVG P12, GOS – 3, and 1321N1), using the PrestoBlue assay, establishing IC50 and examining the time course of drug effects. RESULTS: All compounds were found to decrease cell viability in a concentration and time dependant manner. Significantly, the analogue PN517 (IC50 2mM) showed approximately a twofold increase in potency when compared to aspirin (3.7mM) and cisplatin (4.3mM) in U87 cells, with similar increased potency in SVG P12 cells. Other analogues demonstrated similar potency to aspirin and cisplatin. CONCLUSION: These results support the further development and characterization of novel NSAID derivatives for the treatment of glioma
    corecore