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Abstract

The cancer stem cell (CSC) concept is a highly debated topic in cancer research. While experimental evidence in favor of the
cancer stem cell theory is apparently abundant, the results are often criticized as being difficult to interpret. An important
reason for this is that most experimental data that support this model rely on transplantation studies. In this study we use a
novel cellular Potts model to elucidate the dynamics of established malignancies that are driven by a small subset of CSCs.
Our results demonstrate that epigenetic mutations that occur during mitosis display highly altered dynamics in CSC-driven
malignancies compared to a classical, non-hierarchical model of growth. In particular, the heterogeneity observed in CSC-
driven tumors is considerably higher. We speculate that this feature could be used in combination with epigenetic
(methylation) sequencing studies of human malignancies to prove or refute the CSC hypothesis in established tumors
without the need for transplantation. Moreover our tumor growth simulations indicate that CSC-driven tumors display
evolutionary features that can be considered beneficial during tumor progression. Besides an increased heterogeneity they
also exhibit properties that allow the escape of clones from local fitness peaks. This leads to more aggressive phenotypes in
the long run and makes the neoplasm more adaptable to stringent selective forces such as cancer treatment. Indeed when
therapy is applied the clone landscape of the regrown tumor is more aggressive with respect to the primary tumor, whereas
the classical model demonstrated similar patterns before and after therapy. Understanding these often counter-intuitive
fundamental properties of (non-)hierarchically organized malignancies is a crucial step in validating the CSC concept as well
as providing insight into the therapeutical consequences of this model.
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Introduction

Tumor formation and progression are highly dynamic processes

that are driven by the accumulation of genetic lesions that facilitate

the ability of cancer cells to invade surrounding tissue, form

metastases and develop resistance to therapy. As suggested by

Nowell [1], cancer progression is driven by selective pressure on

the cancer cell population as a result of the competition for space

and resources among different malignant cells as well as normal

cells. Recent observations complicate this attractive model by

suggesting that besides clonal (genetic) variations between cancer

cells, the differentiation grade of cells also contributes to the

heterogeneity found in tumors of various kinds [2,3].

Experiments demonstrating that only a small fraction of cancer

cells are capable of transplanting the disease in immuno-

compromised mice led to the speculation that tumors are

hierarchically organized tissues that depend on so-called cancer

stem cells (CSCs) for their long-term growth. This assumption is

supported by the finding that tumor initiating cell populations can

be isolated based on expression of markers that are often associated

with immature cell types in a variety of tissues. For example only the

CD133+ fraction of glioblastoma cells, which make up approxi-

mately 1% of the total tumor cell load, is capable of initiating growth

of a new glioblastoma upon transplantation. Injection of as many as

100,000 CD133+ cells does not result in effective tumor formation

[4]. To date, the evidence for the CSC model of malignancies is

entirely based on transplantation assays [5,6].

Problems with interpretation of the transplantation data include

potential xenotransplantation bias (injection of human cells into

mice), remaining immunological effects in the recipient mice, and

the fact that for isolation of the various cell populations all the

tumor tissue is disrupted. Moreover the fact that the main tumor

mass is not capable of initiating a new tumor does not necessarily

imply that these cells are also incapable of participating in the

growth of an established malignancy. Indeed it is found that

various mouse models of hematological malignancies do not

display a rare CSC compartment when the cells are injected in

autologous mice [7]. Moreover it appears that the type of

immuno-compromised mouse strain used for the transplantation

assay greatly influences the fraction of cells capable of inducing

tumor growth [8]. This has led numerous researchers to warn

against overly optimistic interpretations of these data, and has

resulted in intense debate in the oncology field over the validity of

the CSC concept [5,9,10,11].

Previously, we and others have demonstrated how the analysis

of methylation patterns in regions of the genome rich in CpG
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dinucleotides (a molecular pattern that can be methylated),

collected from different parts of a tumor, can be a valuable tool

in deciphering the phylogenetic history of malignancies [12,13,14].

The advantage of methylation is the higher mutation rate of

,261025 per site per division [15] compared to DNA point

mutations, such as microsatellites (,10210 [16]). This makes

methylation changes occurring in neutral CpG-rich genomic

regions a powerful and more precise molecular clock that acts as a

cell division counter and allows for the inference of cell phylogeny

within established malignancies. The neutrality of these mutations,

i.e. the fact that these loci are replicated but not transcribed and

expressed, is important because selective forces may disrupt the

relationship between the number of errors and of cell divisions.

Being suitable markers to trace cell fate in tumors, in this study we

model the occurrence of neutral methylation mutations in respect

of pattern heterogeneity and distribution with the aim of

comparing the dynamics of a CSC-driven malignancy to a purely

stochastic, non-hierarchical model of tumor growth that we refer

to as the classical model.

In addition to concerns related to the experimental procedures

that support the CSC theory there are also important theoretical

arguments that challenge the CSC concept. Classical organized

clones, in which all cells are clonogenic, are predicted quickly to

outgrow the hierarchical clones due to favorable growth kinetics.

Therefore, one would expect that evolutionary forces rapidly select

for non-hierarchical cancer cell populations that outcompete the

stem cell driven clones that have retained this organization from

the tissue in which they arose. However, potentially CSC-driven

tumor cell clones display non-intuitive features that are useful in

the process of tumor formation and perhaps even in therapy

resistance. To investigate the different evolutionary dynamics of

the two models and to explore the potential evolutionary benefits

of a hierarchical organization of cancer cells, we expand the

computational model and introduce non-neutral mutations that

can confer a different fitness on cells. In this setting we analyze the

behavior of the different models under different fitness conditions

and landscapes. To conclude, we also study the effect of therapy

on CSC-driven tumors.

Results

We developed a model of tumor growth based on a cellular

Potts approach that can simulate cancer cell proliferation in a

realistic fashion. Our model incorporates the fundamental

processes occurring in cancer growth, such as cell division and

apoptosis. Cellular Potts models have the important benefit of

being able to simulate complex cellular mechanisms such as cell

division, apoptosis and cellular rearrangements realistically and

very efficiently, without the need of artificial assumptions on

cellular mechanics. On top of this we model the occurrence of

neutral methylation mutations and the existence of a hierarchical

organization in the malignant clone, composed of cancer stem cells

(CSC), transient amplifying cells (TAC) and terminally differen-

tiated cells (DC) (see Materials and Methods).

To study the dynamics of neutral epigenetic mutations as markers

of cell populations in cancer [17] we model neutral methylation

changes by assuming that at each cell division errors in copying a

64-CpG dinucleotide region can occur in both the mother and the

daughter cell. We assume methylation and demethylation rates of

m = 261025 errors per CpG site per cell division occurring in all

cells, regardless of their proliferative potential or their stemness [15].

To simulate hierarchical tumor organization we assume that CSCs

in the system are able to self-renew with probability y or to divide

asymmetrically with probability 1-y. In the first case the result of the

cell division are two CSCs, in the second the original CSC and a

TAC, able to divide only G times before becoming quiescent. Due to

the absence of homeostasis in the tumor we assume that

symmetrical division yielding two transient amplifying cells (CSC

differentiation) does not occur. With this scheme classical clonal

tumor growth in which all cells are tumorigenic is simulated by

setting y= 1 (see Materials and Methods for details). The model

parameters are summarized in Table 1.

Neutral epigenetic mutations
We used our cellular Potts model to investigate levels and

distribution patterns of epigenetically distinct clones in both CSC-

driven malignancies as well as in non-hierarchical organized

tumors. Figure 1A and Video S1 display the simulated growth of a

classical malignancy with y= 1 whereas Figure 1B and Video S2

shows a CSC malignancy with y= 0.1. The total tumor volume in

both experiments is 100,000 cells. While the classical model

exhibits a spherical morphology, a CSC-driven neoplasm is

characterized by irregular tumor borders and invasive patterns

driven by expansion of CSCs, as already reported in previous

studies by us [18] and others [19]. With respect to the methylation

patterns the two models also behave in a radically different way.

The CSC model shows a patch-like distribution that originates

from single founder CSCs while the clones in the classical model

tend to follow a radial expansion pattern, as can be appreciated

from Figure 1C (Video S3) and 1D (Video S4) in which

epigenetically distinct clones are indicated by different colors.

The CSC model is also characterized by slower tumor growth and

less cell divisions per unit time due to the smaller population of

long-term dividing cells (Figure S1A and S1B). The difference in

population size between the two models can be summarized by the

CSC fraction present in the clone defined as the ratio between the

number of CSCs and the total volume at each point in time. In the

classical model this value is always 1 whereas in the CSC model it

can be variable; in our analysis it quickly stabilizes to ,0.2% for

y= 0.1 and G = 5, this value is in line with experimental estimates

of CSC fractions (Figure S1C) [2,3].

Next we determined the overall heterogeneity of the two

different tumor growth models by calculating the Shannon index.

Author Summary

Cancer is in essence a genetic disease that leads to
uncontrolled cell proliferation, invasion and metastasis.
The cancer stem cell (CSC) hypothesis states that tumors
are not just a mass of uniform malignant cells but they are
hierarchically organized, like normal tissues. At the top of
such a hierarchy are cancer stem cells that fuel tumor
growth in the long run, whereas the majority of other cells
are able to divide only a few times. The experiments that
support the CSC hypothesis are often criticized as being
difficult to interpret. A novel approach to test the CSC
paradigm is to integrate mathematical modeling with DNA
variation data that carry the phylogenetic history of cells.
We have developed a model that simulates the occurrence
of such changes under both the CSC hypothesis and the
classical, purely stochastic scenario. We found that
although a CSC-driven tumor has a smaller number of
tumorigenic cells, it triggers more malignant properties
such as invasive growth, heterogeneity and evolutionary
escape from peaks in the fitness landscape. These
properties, that are unique to the CSC model, are
enhanced even further when a treatment is applied to
the tumor.

Modeling Hierarchically Organized Tumors
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The Shannon index [20] is the most frequently applied measure of

heterogeneity in biodiversity studies used to describe a population

consisting of individuals of genotypically different subpopulations.

This measure is based on information theory and possesses

properties that account for species richness within an environment.

In our case we measure the Shannon index of the cancer cell

population and normalize it to the interval [0,1] where 0 indicates

a homogeneous population with only one clone and 1 a fully

heterogeneous population where all the subclones are equally

present (see Materials and Methods). This measure indicates that

the CSC malignancy develops a much higher epigenetic

heterogeneity both in the total population (Figure 2A) and in the

CSC compartment alone (Figure 2B), compared to the classical

model (n = 16, p = 1027 for 100,000 cells). The CSC model

reaches levels of heterogeneity that are 25% of the maximum

possible heterogeneity. These differences can also be appreciated

when the non-normalized Shannon index is considered (Figure

S2A and S2B). The high standard deviations reported in these

plots also suggest that a high level of stochasticity is exhibited by

growth driven by a small number of CSCs. As we will discuss

further, this feature of CSC driven tumor growth has critical

consequences in the evolutionary dynamics of malignancies when

non-neutral mutations are considered.

The enhanced heterogeneity is especially striking since within

the CSC model the effective population size, i.e. the number of

cells contributing to tumor growth in the long run (the CSCs), is

about 500 times smaller than in the non-hierarchical model.

Moreover we assumed the mutation rate for an individual cell is

equal in both models. We confirmed that these results are not

dependent on the particular set of parameters we applied, as we

observe a similar outcome for different values of the number, G, of

transient amplifying stages (Figure S3A). Moreover, different

apoptosis rates for both the classical and the CSC model, or

varying the mutation rate does not change our overall conclusions

(Figure S3B, S3C and S4). Interestingly, the parameter G has a

non-trivial effect on the hierarchical model: high values of G

correspond to long-living TACs that add proliferative potential to

the clone. On the other hand small values of G may also increase

the CSC ratio due to the small number of cells produced by TACs.

In addition, a higher apoptosis rate induces higher heterogeneity

by stimulating more cell divisions in both models; however

difference was significant only for the CSC model (p = 0.01).

We propose that the increased heterogeneity in the CSC model

is due to the fundamental intrinsic property of hierarchical growth

models that are driven by long-lived CSCs that must undergo a

large number of cell divisions to keep fueling the growing cancer

population and thereby acquire more (epi)genetic hits. On top of

this mechanism, the probability that a specific clone takes over a

subregion of the tumor of size N purely by drift, i.e. in a scenario

of neutral mutations, is ,1/N whereas for the CSC model is

,1/(Ny) due to the limited proliferative potential of TACs.

Hence, under equal environmental conditions and mutation rate,

a CSC-driven tumor can achieve higher epigenetic heterogeneity

solely due to its hierarchical organization. This is despite the

smaller effective population size of a CSC-driven malignancy. This

feature, as well as the distribution of methylation patterns

(Figure 1C and 1D) could potentially be used as a signature of a

CSC-driven malignancy in established human tumors.

Non-neutral mutations over a fitness landscape
So far we have shown how hierarchical organization of

malignant cells has a major effect on the heterogeneity and spatial

distribution of neutral methylation patterns. To study the

difference between the two models in term of evolutionary

dynamics, we now consider non-neutral epigenetic mutations that

confer changes in terms of cell fitness.

Because of the complex interaction between genetic loci,

mutations can be mutually deleterious yet confer a fitness

advantage when they occur together [21]. Other mutations

appear to be mutually exclusive, suggesting that co-occurrence

of these genetic alterations confers a fitness disadvantage [22]. The

fitness landscape is defined as a map between the space of possible

mutations and the fitness advantage conferred by the phenotypes

to which they relate. The fitness landscape involved in initiation

and progression of malignancies is believed to be a complex curve,

with valleys, peaks and local minima and maxima [21,23]. To

represent the effects of different fitness landscapes on a growing

cancer we assume that as the population of cancer cells introduces

new mutations, the fitness of individuals moves across a certain

fitness landscape function f(x). We approximate the evolutionary

process by assuming that changes in fitness can occur only by

mutations that cause local movements within the fitness function,

such as x R x+1 or x R x21.

We summarize the complex mechanisms behind the accumu-

lation of epigenetic mutations into a non-neutral mutation rate

parameter mf = 0.1 per cell division that induces changes in the cell

phenotype x, that in turn corresponds to a division rate f(x). In this

scenario clones with different replication times compete with each

other for space. A further selective force is represented in our

model by apoptosis, occurring at a constant rate that affects

relatively slowly dividing clones more dramatically. To illustrate

this, we assume a space of 50 phenotypes with x M [224,+25] with

solid boundary conditions (no mutation can occur beyond the

borders) on which we define different fitness landscapes, both

Table 1. Parameters of the cellular Potts model.

Parameter Symbol Value Reference/Justification

Cell cycle duration c 20 h [52]

Methylation rate (per CpG per cell division) m 261025 [15]

Cell adhesion coefficient J 9 [53]

Cell stiffness l 3 Derived from [53]

Maximum number of cell divisions per TAC G 5 (3, 7 in Figure S3C) Vary G and y to vary CSC fractions [2,18]

Apoptosis rate (fraction per 24 h) a 0.01 (0, 0.04 in Figure S3A-B) Rate lower than CSC growth rate

Apoptosis rate (fitness) af 0.02 Rate lower than CSC growth rate

Non-neutral mutation rate mf 0.1 [28]

doi:10.1371/journal.pcbi.1001132.t001

Modeling Hierarchically Organized Tumors

PLoS Computational Biology | www.ploscompbiol.org 3 May 2011 | Volume 7 | Issue 5 | e1001132



linear and non-linear as well as symmetric and asymmetric, and

we compare the behavior of the two models of growth under such

fitness conditions. We start all the simulations with a single cell

possessing the phenotype x0 = 0 that can randomly move right or

left along the x-axis. We simulate growth of the neoplasm until a

volume of 100,000 cells is reached (see Table 1 for the other

parameters used).

In the simplest case we define a linear fitness curve fL(x) = x+8

(with fL(x) = 1 for negative values of x) in which the replication

rate increases proportionally to x (Figure 3A, n = 8). As expected,

in both models the bulk of the population tends towards clones

expressing higher fitness (high values of x). Importantly, it is

apparent how the CSC model shows the property of spreading

much faster across the fitness landscape compared to the classical

model. The CSC model mainly explores higher fitness regions,

yet also phenotypes with relatively low fitness values are

abundantly present. This is in line with our previous finding that

the CSC model stimulates heterogeneity and we argue that this

effect has to do with the lower selective pressure present in the

CSC model that allows clones with no direct survival benefit to

coexist in the neoplasm and contribute to tumor growth.

Furthermore, this peculiar property has consequences in the

evolutionary process because it allows populations to visit, and

eventually cross, regions of the landscape with lower fitness values

that nevertheless may lead to beneficial phenotypes in the long

run (fitness valleys).

Figure 1. Morphology of the classical model and the CSC model. Tumor morphology appears spherical in the classical model (A) whereas
tumor borders in the CSC model are irregular (B). Red: CSCs, yellow: TACs, blue: DCCs (zoom box, black: cell borders). The distribution of the neutral
methylation patterns is radial in the classical model (C) versus patch-like in the CSC one (D).
doi:10.1371/journal.pcbi.1001132.g001

Modeling Hierarchically Organized Tumors
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To evaluate the response of the models to more complex fitness

variations we defined a sinusoidal function fS(x) = 32x sin(x/2) (with

fS(x) = 1 for negative values). This function is characterized by fitness

valleys that lead to peaks with faster replicating phenotypes in the

long run. An example of a fitness valley is the cooperation of the

oncogenes Myc and RAS in mice [24]. Whereas these oncogenes

promote tumorigenesis when both are mutated, the mutation of

only one of them has an anti-cancer effect due to the induction of

apoptosis in Myc-mutated cells and senescence in RAS-mutated

ones. From these types of study it is concluded that the crossing of

fitness valleys is therefore an important mechanism that occurs

during tumorigenesis and tumor progression. To simulate this

property we apply a sinusoidal fitness function (Figure 3B, n = 8).

Here we observe how the evolutionary properties of the classical

model prevent clones from overcoming local minima due to the

stringent action of phenotypical selection. The cancer cell

population can evolve only within the restricted central part of

the fitness landscape that represents the local optimum. Strikingly,

because of the weaker effect of selection and the more important

role of drift, the CSC population can expand to a broader part of the

fitness curve and acquire more aggressive phenotypes in the long

term. A very similar pattern is illustrated in Figure 3C where the

fitness peaks are more numerous due to a slightly different fitness

function f ’S(x) = x sin(x)+2. Here again the classical model adapts to

the local fitness landscape whereas the CSC model can escape it and

reach further evolutionary peaks. This dynamical evolutionary

mechanism, driven not only by selection but also by drift, is even

more evident when we analyze different growth stages of the

experiments presented in Figure 3C (Figure S5). This highlights how

the distribution of the clones dynamically probes the fitness landscape

and ultimately reaches higher fitness points.

To perturb the symmetrical effects of random mutations we define

a third function with asymmetric properties to further analyze the

response of the models. The fitness landscape fC(x) = x cos(x/2)+2

specifies a similar function to the previous one but it has

asymmetrical properties with respect to the y-axis (Figure 3D). Once

more the results suggest a conservative behavior of the classical

model that quickly adapts to the local maximum and, in contrast, a

highly dynamical behavior of the CSC model that instead overcomes

fitness valleys during a fast exploration of the fitness landscape.

To eliminate the bias introduced by an expanding population

we investigate the stationary distribution of the phenotypes in a

non-expanding malignancy. For this we run a set of simulations

with the sinusoidal fitness function fS(x) in which we start with a

volume of 25,000 cells and maintain constant population size by

randomly killing cells to maintain the original volume, until a total

of 1.2 million cell divisions is reached in both models of tumor

growth. This approach shows that the findings we described for

expanding malignancies are confirmed for a stationary scenario

with constant population size and an equally large number of cell

divisions in both models (Figure S6).

Clearly, in both models the clone distribution does not simply

scatter through dispersion but is driven by the fitness function that

offers local peaks near the starting point with relatively easy access

and other higher peaks that are preceded by low fitness values.

While the classical model remains trapped within those initial local

maxima, the CSC model is free to move ahead to higher fitness

peaks, showing its ability to overcome fitness valleys. In all our

results, the classical model emerges as a model of growth primarily

driven by selection for the (non-optimal) fittest clones that

outcompete the large number of tumorigenic cells in their

neighborhood. In this type of scenario overcoming local maxima

and exploring large portions of the fitness landscape becomes

impossible. Within high selective pressure conditions, any cell that

acquires even a slightly lower fitness (approaching a fitness valley)

due to a disadvantageous mutation would be immediately out-

competed by the surrounding cells with higher fitness. The higher

robustness of the CSC model, induced by its lower selective

pressure that allows for the proliferation of several clones with no

selective advantage, increases the adaptability of the cancer

population that also becomes more evolvable. The lower selective

pressure allows cells to approach a fitness valley and bear

temporarily disadvantageous mutations such as RAS with wildtype

Myc [24] to survive in a sort of spatial evolutionary niche. Such

cells could then carry on accumulating aberrations, such as Myc in

this example, and become more malignant in the long run. This

Figure 2. The CSC model enhances methylation pattern heterogeneity. Despite its much smaller effective population size, the CSC model
(red) shows consistently higher heterogeneity (A) with respect to the classical (blue) model of malignancies (p = 1027 at 100,000 cells, a = 0.01).
Importantly this measure is even enhanced when considering the CSC compartment only (B) (p = 1027 at 100,000 cells). Error bars represent SD with
n = 16.
doi:10.1371/journal.pcbi.1001132.g002

Modeling Hierarchically Organized Tumors
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direct but counterintuitive relationship between robustness and

evolvability has recently been discussed by Draghi and colleagues

[25]. In a CSC-driven malignancy such robustness is not assumed

a priori, depending on a specific fitness landscape, but emerges

naturally from the hierarchical organization itself. These results

show how a hierarchically organized populations of cancer cells,

despite having the disadvantage of a smaller effective cell

population size, can escape stringent selective forces represented

by cancer therapies that target fast dividing cells. Such treatment

modalities would be highly effective in a selection-driven classical

model of growth. This therapy-escaping mechanism present in

hierarchical malignancies may lead to a more invasive and

therapy-resistant cancer through faster accumulation of diverse

clones and evolutionary escape of local fitness peaks.

Evolutionary dynamics associated with treatment
To investigate the influence of therapy in the different cancer

scenarios we simulate the application of treatment when the

tumor volume reaches 30,000 cells. At that point in time, all

proliferating cells (see Material and Methods) are killed,

independently of their differentiation status. The remaining cells

are left to repopulate the tumor and form the relapse. We analyze

the status of the tumor just before therapy and after the relapsed

neoplasm has again reached the volume of 30,000 cells. As an

example we consider the sinusoidal fitness function fS(x) with the

same conditions as employed before. Whereas the classical model

displays no evident difference between the two time points (the

neoplasm has just regrown similarly to its primary counterpart),

in the CSC model the therapy has radically altered the

distribution of the phenotypes, pushing larger populations of

cells to occupy higher fitness peaks (Figure 4A and 4B). The

phenotypical heterogeneity of the clones does not significantly

change in the CSC model (p = 0.46) while it decreases slightly in

the classical model (p = 0.02) (Figure S7A). However, the average

fitness does increase considerably in the CSC model (p = 0.0023)

and yet only minimally in the classical model (p = 0.04) (Figure S7B).

Figure 3. The CSC model escapes local fitness peaks and achieves better fitness in the long run. Within a linear fitness function fL(x)
= x+8 (A) the CSC model tends to spread towards low fitness regions too, rather than just selecting for the fastest replicating clone. In the case of a
symmetrical fitness function with peaks and valleys fS(x) = 32x sin(x/2) and f’S(x) = x sin(x)+2 (B,C) the CSC model shows evolutionary superiority and
the ability to escape local peaks and reach higher fitness in the long run. Even more clearly, the same evolutionary differences are present under an
asymmetrical fitness function fC(x) = x cos(x/2)+2 (D). Error bars represent SD with n = 8.
doi:10.1371/journal.pcbi.1001132.g003

Modeling Hierarchically Organized Tumors
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According to this analysis the CSC model not only relapses more

aggressively, but it also changes the phenotypical composition of

its clones, resulting in a relapsed neoplasm that is radically

different from the originally treated one. In the classical model

most of the cells stay within the local fitness peak seeking the

highest local fitness point. Cells that eventually survive therapy

are still trapped within the same peaks and the tumor that

develops after relapse is very similar to the primary one. Said

differently, the CSC model also allows less fit clones to survive in

the lower parts of the fitness landscape. In this way cells are not

only prone to cross fitness valleys, but in case of treatment, they

can survive due to their slow cycling phenotype. Hence, the

relapsed tumor benefits from the further expansion of the clone

pool towards even more aggressive phenotypes. This mechanism

results not only in the increase of aggressiveness of the neoplasm

at time of relapse, but also in a very different clonal composition

of the tumor. The behavior of the CSC model therefore suggests

that the fundamental organization of malignant clones may

directly influence the therapeutic effect of treatment and the

acquisition of resistance in cancers.

Discussion

Modeling tumor growth using cellular automata, partial

differential equations and hybrid models has revealed some of

the important underlying dynamics of the growth of malignancies

[26]. Since the models proposed by Dormann and Deutsch [27] it

has been possible to simulate the formation of a three-layered

structure in tumors, made by proliferating, quiescent and necrotic

layers. Successively, more advanced hybrid models have shown

how the invasion patterns in malignancies could arise from the

interaction with the microenvironment [28]. A similar hybrid

approach, incorporating the CSC concept, has illustrated how a

small population of stem-like cells in cancer can drive tumor

invasion with a mechanism that the authors define as self-

metastasis [19]. Using a cellular automata approach we have

previously shown that tissue invasion and intra-tumor heteroge-

neity could arise from the internal organization of the clone itself,

from its interaction with the microenvironment or from a complex

mixture of both [18,29].

Recently, cellular automata based on Potts models [30] have

been developed to simulate the dynamics of populations of cells

[31]. Models derived from this paradigm have been successfully

employed in cancer research to predict the conditions for cancer

cell survival and the diffusion dynamics of growth factors [32]. In

this work we use a similar approach to model the cellular growth

of malignancies but for the first time to our knowledge, we

integrate the cellular Potts modeling approach with the hierarchi-

cal organization of cancer cell populations and with the

occurrence of neutral and non-neutral mutations to study the

evolutionary dynamics of malignancies. We put special emphasis

on the process of cancer evolution [33] since this covers the most

fundamental questions in cancer research such as the progression

of tumors to invasive and metastatic neoplasms.

In evolutionary terms, cancer cells compete for resources such

as oxygen, glucose and space, both with other cancer clones as well

as with normal cells surrounding the malignancy. The limit of

available resources, such as the space to proliferate, induces a

selective pressure on the expanding neoplasm. Each cancer cell

competes for proliferation within those limits, a mechanism

summarized in our model with the space constraint and random

apoptosis. In this context, malignant cells with higher fitness can

outcompete their neighbors in terms of proliferation and so lead to

clone expansion. Hence, a fully clonogenic tumor, i.e. a tumor in

which all cells posses the capacity to proliferate indefinitely,

appears to be the best organization to develop further malignant

traits and clonal heterogeneity, as observed in tumors in vivo

[34,35,36].

However, our investigations suggest that under the same

environmental conditions and mutation rate, the evolutionary

dynamics of neutral epigenetic changes in tumors lead to the

counter-intuitive emergence of intra-tumor heterogeneity in

hierarchically organized malignancies. This process seems to be

intrinsic to the organization present in the malignant clone itself

and need not depend upon external microenvironmental factors.

Certainly, the tumor microenvironment has been shown to play an

important role in cancer, in particular in modulating stem cell

features of cancer cells [37,38]. Although we do not take this into

consideration in the present study, previous results suggest that a

Figure 4. The CSC model stimulates malignant features in relapsing tumors after therapy. Whereas the relapsing tumors in a classical
model are highly similar to the primary ones, displaying an unaltered average fitness (A, p = 0.04), the CSC model not only shows a different clonal
distribution, but also the average fitness is considerably increased (B, p = 0.0023). Error bars represent SD with n = 12.
doi:10.1371/journal.pcbi.1001132.g004
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model where the stemness is intrinsic to the cell and a model where

instead it is completely determined by the microenvironment yield

similar results regarding the clonal evolution of the malignancy

[29]. In our future studies we plan to incorporate this aspect of

tumor biology in more detail; in fact our cellular Potts model

approach is a natural framework to study this type of interaction.

The CSC compartment may be fixed or display plasticity driven

by the microenvironment; in both cases a tumor organization that

stimulates heterogeneity through genetic drift [18,33] and

promotes the emergence of clones without a direct survival benefit

may allow a more malignant evolution of a cancer cell population

[39]. Furthermore, we have shown how in the CSC model cancer

cells are free to explore the landscape of possible genetic

alterations, overcome fitness valleys (local minima) and escape

from local fitness peaks (Figure 3, S5 and S6), as also observed in

the evolution of small populations [40] and in the adaptability of

robust phenotypes [25]. We believe that such growth could give

rise to radically different evolutionary dynamics, unlike the

scenario where only the fittest individuals overcome the compet-

itors. Instead, we propose that populations of cancer cells can raise

their survival chances not only through their relative fitness, but

also by increasing genetic drift through a mechanism of

segregation. In this way, individuals could achieve survival because

of the lowered selective pressure and increased genetic drift, rather

than through stringent competition. This last mechanism can

occur by means of migration but also through hierarchical

organization of clones that consequently would occur in

segregation of individuals through asymmetric division of stem-

like cells.

In a highly competitive environment with scarce resources such

as in a tumor microenvironment, being fitter (e.g. proliferating

faster) may be too expensive and/or disadvantageous in the long

run since it diminishes the heterogeneity of the total population, as

we demonstrated in this study. Alternatively, a clone could evolve

through an easier yet riskier path, such as due to lower selective

pressure and increased genetic drift induced by any mechanism of

segregation. This suggests an intimate relationship between

evolution and organization of a malignant clone: the hierarchical

structure of growth could be advantageous in evolutionary terms

with respect to a flat structure, despite its apparently limited

proliferative potential. Generally, this process could occur in other

types of evolving populations. These findings directly support the

need for using spatial models in the study of evolutionary dynamics

of tumor growth.

On top of these mechanisms, a hierarchically organized cancer

population has the capacity to regenerate after treatment,

presenting a relapsed neoplasm that displays more aggressive

traits and a substantially different clonal composition compared to

its primary counterpart. This is especially intriguing as relapsed

tumors are often considerably different from the original

malignancy in many features including aggressiveness and clonal

composition. This fact is usually attributed to the selection of

clones that are relatively resistant to particular drugs during

treatment [41,42,43]. However, our findings indicate that a CSC-

driven malignancy has intrinsic features that explain such behavior

independently of clonal resistance.

In conclusion this work presents a theoretical study of the

emerging properties of CSC-driven tumor growth. It clearly points

out interesting and counterintuitive features of hierarchically

organized models of growth. To corroborate our findings by

means of experimentation, a possible approach would be to

employ extensive methylation sequencing [15,17] of in vitro or in

vivo tumors known to retain a CSC organization [44]. Our

predictions could help to establish if rare CSCs are effectively

present in tumors, as advocated by the CSC hypothesis. More

importantly, our results refer directly to an in vivo context that can

be accessed in terms of methylation analysis, a scenario that

transplantation and in vitro experiments are unable to reproduce

convincingly. Finally, our study elucidates evolutionary mecha-

nisms that have critical implications for therapy resistance of

tumors such as the increased heterogeneity, the escape from local

fitness peaks and the capacity to present a completely altered

malignancy after treatment.

Materials and Methods

The tumor growth model
To simulate a malignancy and the mutations occurring in it we

developed a mathematical model of tumor growth based on a

Cellular Potts Model (CPM) [30]. A CPM is a Monte Carlo

computational modeling technique developed in the field of

statistical mechanics. Our model allows us to simulate several

important processes occurring in the growth of a tumor such as

cell proliferation, cell membrane deformation and cell-to-cell

adhesion. A CPM represents the system, in our case the tumour, as

a 2-dimensional lattice V with N6N sites. Each cell has a unique

identifier s that defines the cell volume Vs and shape within the

lattice [45]. To each cell identifier is also assigned a cell type t(s),

in our case for instance a cancer stem cell or a differentiated

cancer cell. In a CPM we can simulate cell proliferation and

adhesion by representing these processes as transitions from

energetically unfavorable states to energetically favorable ones. In

this manner, for example, a compressed cell would seek to

maintain its volume by creating a counterforce. The total energy

of the system can be described by a simple Hamiltonian:

H~EvzEa ð1Þ

with Ev the cell elastic energy and Ea the cell membrane contact

energy. These variables correspond to the cost of a certain cell

state in terms of energy.

Volume elastic energy

Ev~
X

s

lt(s) Vs{Vtrj j ð2Þ

Under no mechanical stress, the volume of a cell Vs is equal to its

target volume Vtr, thus elastic energy Ev = 0. Under compression or

stretch, the cell elastic energy increases as described by (2), where

the cell elastic coefficient lt(s) depends only on the cell type t(s).

Cell adhesion energy

Ea~
X

(i,j)(i0 , j0 )neighbours

J t(si, j),t(si0 ,j 0 )
� �

ð1{bsi, jsi0 ,j 0
Þ ð3Þ

The energy cost J(t1,t2) is assigned to each contact point of the

cell membranes, and depends on the cell type. The term b in (3)

avoids counting points belonging to the same cell. This method

simulates cell membrane adhesion in a simple and elegant manner.

At each time step dt we evolve the system by randomly drawing

a certain number of random local changes in a Monte Carlo

fashion, those changes can be accepted or rejected as illustrated by

the Metropolis algorithm below [46]:
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1. Compute system energy H

2. Pick a random lattice site (i, j)

3. Set the content s of (i, j) to that of its neighbor (i’, j’), chosen at

random

4. Calculate the energy difference DH = Hnew – H

5. If DH,0 accept new state because the total energy is lower

6. If DH$0 accept new state with probability p~exp({ DH
kT

)

7. If cell is growing, increase target volume Vtr = Vtr+dV

8. If Vs.2Vtr divide cell (Vs tries to grow to size Vtr since it is a

lower energy state)

9. Go to 1

This technique allows us to simulate efficiently and in an elegant

way several crucial processes occurring in cancer. Our model

proved to be very flexible and computationally fast and therefore

suitable to perform statistical inference of biological parameters, as

in the case of the colon crypt [47]. Here we propose an extension

of such a model to simulate large cancer cell populations within a

malignancy. The model simulates the expansion of malignant cells

that originate from a single initial cancer cell that can proliferate

by invading the surrounding tissue (not simulated) while

accumulating DNA mutations according to any mutation scheme

we need. Because cancers are accompanied by massive cell death

we introduce in our model an apoptosis rate a that corresponds to

the fraction of cells randomly selected for death every 24 h. This

parameter allows us to investigate the influence of apoptosis in the

dynamics of cancer epigenetic alterations in cancer.

On top of this tumor growth model, we implemented the CSC

hierarchy by assuming two possible cell types in the system: cancer

stem cells (CSC) and more differentiated cancer cells (DCC). At

every division a CSC has probability d to self-renew and therefore

generate a new CSC, and probability 1-y to spin off a TAC.

TACs can undergo a maximum of G divisions before becoming

fully differentiated and irreversibly stopping division. By changing

the parameter y we can modify the size of the CSC compartment,

spanning tumors with a very small population of CSCs (y,1) to

the classical model of malignancies where all cells in the tumor are

tumorigenic and have stem-like features (y= 1). In this model no

active cell migration is considered, however cells may diffuse due

to low cell-to-cell adhesion and the distribution of mechanical

forces within the tumor.

To implement cell fitness advantage, in relationship to a certain

fitness landscape, we assign to each cell a specific phenotype in the

range [225,25] with the first cell starting with phenotype 0. To

each phenotype x corresponds a fitness value f(x), representing the

growth rate of the cells possessing that phenotype. In the model

this corresponds to the increase of target volume dV implemented

in the step 7 illustrated above. In this way cells with a faster

growing phenotype will reach the target volume faster and will

consequently divide more often.

Although we have also developed a 3-dimensional version of the

model, in this paper we make use of a 2-dimensional implemen-

tation of it. This represents a tumor as a sheet of cells and permits

us to study the global evolutionary dynamics of a considerably

larger cancer cell population by enhancing the computational

feasibility. We believe that to investigate the dynamics we discuss,

a two-dimensional model is a good and efficient solution, as for

most tumor growth models [18,32,48,49,50,51]. Moreover, agent-

based models of tumor growth like the one we describe have

proved to yield equivalent results in both two and three

dimensions [18,28]. In general, simulation times on a 2.5 GHz

Xeon CPU were of ,8 h for the classical model experiments and

,20 h for the CSC model simulations assuming V= 200062000

with 16 points per cell.

Measure of heterogeneity
To measure the level of clonal diversity in the tumor population

we make use of the Shannon index of biodiversity [20] normalized

to the interval [0,1]. The Shannon index is a measure of

biodiversity of species within an ecosystem, in our case different

methylation patterns within the tumor. A high value of the

Shannon index indicates that all the species present in the

ecosystem (the different methylation patterns in the malignancy)

are present in equal numbers, a small Shannon index instead

represents a scenario where one or few patterns are present in

large numbers and virtually dominate the other patterns.

The Shannon index H is calculated as in equation (4),

J~{
XS

i~1

piln(pi) ð4Þ

where pi is the relative abundance of species i (a specific

methylation pattern). For any given number of species S there is

a maximum possible Shannon index of Jmax = log S that reflects

the highest possible biodiversity in the system where all species are

present in equal number. In our analysis we consider the

normalized Shannon index J’ =J/Jmax at any given point in

time. According to this measure a value of 0 corresponds to the

presence of a single dominant clone whereas a value of 1

represents a heterogeneous neoplasm where all the subclones are

present in equal numbers.

Supporting Information

Figure S1 Timescales and population size. The classical model

(blue) displays faster growth rate (A) and larger amount of cell

divisions per time (B) due to a fully tumorigenic population

whereas the tumorigenic fraction in the CSC model (red) is limited

to ,0.2% of the total (C). Error bars represent SD with n = 16, see

Table 1 for details on parameters used.

Found at: doi:10.1371/journal.pcbi.1001132.s001 (0.63 MB EPS)

Figure S2 Heterogeneity of the cancer stem cell population.

Increased heterogeneity for the CSC model is reported also with

the standard Shannon index for the total population (A) as well as

for the CSC compartment only (B). Error bars represent SD with

n = 16.

Found at: doi:10.1371/journal.pcbi.1001132.s002 (0.52 MB EPS)

Figure S3 Heterogeneity for different values of G and apoptosis

rate. In both the classical (A) and the CSC model (B) the apoptosis

rate modestly stimulates methylation pattern heterogeneity by

inducing a larger number of cell divisions although in the CSC

model this effect is significant (p = 0.009) whereas in the classical

model it is not (p = 0.41). Different sizes of the TAC compartment

have a non-trivial effect on heterogeneity (C) yet for the examined

values only G = 7 significantly alters the results (p = 0.0002). Error

bars represent SD with n = 16.

Found at: doi:10.1371/journal.pcbi.1001132.s003 (0.64 MB EPS)

Figure S4 Robustness for variations of the mutation rate. The

results are significantly robust with respect to changes in mutation

rates although for lower mutation rates the differences are non

significant due to the necessity to simulate much larger populations

under very rare mutation events. Error bars represent SD with

n = 8.

Found at: doi:10.1371/journal.pcbi.1001132.s004 (0.46 MB EPS)
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Figure S5 Evolution of non-neutral mutations at different

growth stages. The evolutionary behavior of the two models is

illustrated for growth points using the sinusoidal function fS’(x).

Here the mechanism of fitness landscape probing using genetic

drift that characterizes the CSC model is evident from the change

of distribution of the clones during growth. The volumes

considered are 1k (A), 5k (B), 10K (C), 20k (D), 50k (E) and

100k (F). Error bars represent SD with n = 8.

Found at: doi:10.1371/journal.pcbi.1001132.s005 (1.13 MB EPS)

Figure S6 The evolutionary dynamics of the CSC model are

confirmed under constant population size and equal number of

divisions. The same ability of the CSC model to overcome local

maxima and achieve better fit in the long run while maintaining a

pool of low-fitness clones is confirmed also when the population is

maintained at constant size (25,000 cells) and compared to the

classical model after 1.2M cell divisions. Error bars represent SD

with n = 8.

Found at: doi:10.1371/journal.pcbi.1001132.s006 (0.49 MB EPS)

Figure S7 Heterogeneity and average fitness of the two models.

After treatment in both models the overall heterogeneity of the

clones remains similar (A, CSC p = 0.46, classical p = 0.02). Yet

the average fitness of the CSC model is dramatically increased in

the regrown tumors (B, CSC p = 0.0023, classical p = 0.04). Error

bars represent SD with n = 12.

Found at: doi:10.1371/journal.pcbi.1001132.s007 (0.45 MB EPS)

Video S1 Simulated growth of a classical (flat) tumor.

Found at: doi:10.1371/journal.pcbi.1001132.s008 (1.08 MB AVI)

Video S2 Simlated growth of a hierarchically organized tumor.

Found at: doi:10.1371/journal.pcbi.1001132.s009 (3.36 MB AVI)

Video S3 Methylation patterns in a classical (flat) tumor.

Found at: doi:10.1371/journal.pcbi.1001132.s010 (0.21 MB AVI)

Video S4 Methylation patterns in a hierarchically organized

tumor.

Found at: doi:10.1371/journal.pcbi.1001132.s011 (1.91 MB AVI)
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