17 research outputs found

    Clinical characteristics and outcomes of COVID-19 patients with a history of cardiovascular disease

    Get PDF
    New emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) primarily affects the lungs, but the virus may cause cardiovascular disease (CVD), and a history of CVD is usually associated with comorbidities, which could increase the severity of infections. In this study, we collected demographic and clinical characteristics data from 123 patients with a history of CVD, who were confirmed to have SARS-CoV-2 infection by polymerase chain reaction (PCR) test in Razi Hospital, Rasht, Iran, from March 2021 to June 2021. Chi-Square and Fisher's Exact test with a significance level of P less than 0.05 was performed. All statistical analysis was performed with SPSS software version 26.0. Among the studied patients, 99 patients were discharged and 24 of them died. 62 (50.4%) of the study population were female and 61 (49.6%) were male, and there is no significant association between gender and the outcome of patients (P = 0.159). The total mean age of patients was 68.35±12.41. Statistical analysis has represented a significant relation of death outcomes in CVD patients with age 60 years and older (P = 0.001), in comparison with patients younger than 60 years. In this present study, no significant relation between underlying disease and mortality rate was reported, but in COVID-19 patients with a history of CVD and age upper than 60 years, death outcome was more probable

    Topographic divergence of atypical cortical asymmetry and atrophy patterns in temporal lobe epilepsy

    Get PDF
    Temporal lobe epilepsy, a common drug-resistant epilepsy in adults, is primarily a limbic network disorder associated with predominant unilateral hippocampal pathology. Structural MRI has provided an in vivo window into whole-brain grey matter structural alterations in temporal lobe epilepsy relative to controls, by either mapping (i) atypical inter-hemispheric asymmetry; or (ii) regional atrophy. However, similarities and differences of both atypical asymmetry and regional atrophy measures have not been systematically investigated. Here, we addressed this gap using the multisite ENIGMA-Epilepsy dataset comprising MRI brain morphological measures in 732 temporal lobe epilepsy patients and 1418 healthy controls. We compared spatial distributions of grey matter asymmetry and atrophy in temporal lobe epilepsy, contextualized their topographies relative to spatial gradients in cortical microstructure and functional connectivity calculated using 207 healthy controls obtained from Human Connectome Project and an independent dataset containing 23 temporal lobe epilepsy patients and 53 healthy controls and examined clinical associations using machine learning. We identified a marked divergence in the spatial distribution of atypical inter-hemispheric asymmetry and regional atrophy mapping. The former revealed a temporo-limbic disease signature while the latter showed diffuse and bilateral patterns. Our findings were robust across individual sites and patients. Cortical atrophy was significantly correlated with disease duration and age at seizure onset, while degrees of asymmetry did not show a significant relationship to these clinical variables. Our findings highlight that the mapping of atypical inter-hemispheric asymmetry and regional atrophy tap into two complementary aspects of temporal lobe epilepsy-related pathology, with the former revealing primary substrates in ipsilateral limbic circuits and the latter capturing bilateral disease effects. These findings refine our notion of the neuropathology of temporal lobe epilepsy and may inform future discovery and validation of complementary MRI biomarkers in temporal lobe epilepsy.11Nsciescopu

    The Unique Cytoarchitecture and Wiring of the Human Default Mode Network

    No full text
    It is challenging to specify the role of the default mode network (DMN) in human behaviour. Contemporary theories, based on functional magnetic resonance imaging (MRI), suggest that the DMN is insulated from the external world, which allows it to support perceptually-decoupled states and to integrate external and internal information in the construction of abstract meanings. To date, the neuronal architecture of the DMN has received relatively little attention. Understanding the cytoarchitectural composition and connectional layout of the DMN will provide novel insights into its role in brain function. We mapped cytoarchitectural variation within the DMN using a cortical type atlas and a histological model of the entire human brain. Next, we used MRI acquired in healthy young adults to explicate structural wiring and effective connectivity. We discovered profound diversity of DMN cytoarchitecture. Connectivity is organised along the most dominant cytoarchitectural axis. One side of the axis is the prominent receiver, whereas the other side remains more insulated, especially from sensory areas. The structural heterogeneity of the DMN engenders a network-level balance in communication with external and internal sources, which is distinctive, relative to other functional communities. The neuronal architecture of the DMN suggests it is a protuberance from the core cortical processing hierarchy and holds a unique role in information integration

    Convergence of cortical types and functional motifs in the human mesiotemporal lobe

    Full text link
    The mesiotemporal lobe (MTL) is implicated in many cognitive processes, is compromised in numerous brain disorders, and exhibits a gradual cytoarchitectural transition from six-layered parahippocampal isocortex to three-layered hippocampal allocortex. Leveraging an ultra-high-resolution histological reconstruction of a human brain, our study showed that the dominant axis of MTL cytoarchitectural differentiation follows the iso-to-allocortical transition and depth-specific variations in neuronal density. Projecting the histology-derived MTL model to in-vivo functional MRI, we furthermore determined how its cytoarchitecture underpins its intrinsic effective connectivity and association to large-scale networks. Here, the cytoarchitectural gradient was found to underpin intrinsic effective connectivity of the MTL, but patterns differed along the anterior-posterior axis. Moreover, while the iso-to-allocortical gradient parametrically represented the multiple-demand relative to task-negative networks, anterior-posterior gradients represented transmodal versus unimodal networks. Our findings establish that the combination of micro- and macrostructural features allow the MTL to represent dominant motifs of whole-brain functional organisation

    Evaluation of Serum Interleukins-6, 8 and 10 Levels as Diagnostic Markers of Neonatal Infection and Possibility of Mortality

    No full text
    Objective(s): Bacterial infection contributes substantially to neonatal morbidity and mortality. Early diagnosis of neonatal sepsis is difficult because clinical signs are non-specific. We have evaluated serum IL-6, 8 and 10 as potential early diagnostic markers of neonatal infection and their relationship to mortality rate and poor prognosis.   Materials and Methods : A total of 84 infants, aged ≥ 72 hr were enrolled in this prospective case-control trial. The case group (n=41) included babies with clinical and laboratory findings compatible with sepsis and/or positive blood or cerebrospinal fluid cultures. The control group (n=43) included healthy infants. IL-6, 8 and 10 were measured for all infants. Receiver-operating characteristic (ROC) curves were used for the determination of thresholds. Results : Statistically significant differences were observed between control and case groups for serum median level of IL-6, 8 and 10 (

    Structural Connectivity Gradients of the Temporal Lobe Serve as Multiscale Axes of Brain Organization and Cortical Evolution

    Get PDF
    The temporal lobe is implicated in higher cognitive processes and is one of the regions that underwent substantial reorganization during primate evolution. Its functions are instantiated, in part, by the complex layout of its structural connections. Here, we identified low-dimensional representations of structural connectivity variations in human temporal cortex and explored their microstructural underpinnings and associations to macroscale function. We identified three eigenmodes which described gradients in structural connectivity. These gradients reflected inter-regional variations in cortical microstructure derived from quantitative magnetic resonance imaging and postmortem histology. Gradient-informed models accurately predicted macroscale measures of temporal lobe function. Furthermore, the identified gradients aligned closely with established measures of functional reconfiguration and areal expansion between macaques and humans, highlighting their potential role in shaping temporal lobe function throughout primate evolution. Findings were replicated in several datasets. Our results provide robust evidence for three axes of structural connectivity in human temporal cortex with consistent microstructural underpinnings and contributions to large-scale brain network function

    Convergence of cortical types and functional motifs in the human mesiotemporal lobe

    No full text
    The mesiotemporal lobe (MTL) is implicated in many cognitive processes, is compromised in numerous brain disorders, and exhibits a gradual cytoarchitectural transition from six-layered parahippocampal isocortex to three-layered hippocampal allocortex. Leveraging an ultra-high-resolution histological reconstruction of a human brain, our study showed that the dominant axis of MTL cytoarchitectural differentiation follows the iso-to-allocortical transition and depth-specific variations in neuronal density. Projecting the histology-derived MTL model to in-vivo functional MRI, we furthermore determined how its cytoarchitecture underpins its intrinsic effective connectivity and association to large-scale networks. Here, the cytoarchitectural gradient was found to underpin intrinsic effective connectivity of the MTL, but patterns differed along the anterior-posterior axis. Moreover, while the iso-to-allocortical gradient parametrically represented the multiple-demand relative to task-negative networks, anterior-posterior gradients represented transmodal versus unimodal networks. Our findings establish that the combination of micro- and macrostructural features allow the MTL to represent dominant motifs of whole-brain functional organisation

    A Structure-Function Substrate of Memory for Spatial Configurations in Medial and Lateral Temporal Cortices

    No full text
    Prior research has shown a role of the medial temporal lobe, particularly the hippocampal-parahippocampal complex, in spatial cognition. Here, we developed a new paradigm, the conformational shift spatial task (CSST), which examines the ability to encode and retrieve spatial relations between unrelated items. This task is short, uses symbolic cues, incorporates two difficulty levels, and can be administered inside the scanner. A cohort of 48 healthy young adults underwent the CSST, together with a set of behavioral measures and multimodal magnetic resonance imaging (MRI). Inter-individual differences in CSST performance correlated with scores on an established spatial memory paradigm, but neither with episodic memory nor mnemonic discrimination, supporting specificity. Analyzing high-resolution structural MRI data, individuals with better spatial memory showed thicker medial and lateral temporal cortices. Functional relevance of these findings was supported by task-based functional MRI analysis in the same participants and ad hoc meta-analysis. Exploratory resting-state functional MRI analyses centered on clusters of morphological effects revealed additional modulation of intrinsic network integration, particularly between lateral and medial temporal structures. Our work presents a novel spatial memory paradigm and supports an integrated structure-function substrate in the human temporal lobe. Task paradigms are programmed in python and made open access

    BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets

    No full text
    Understanding how cognitive functions emerge from brain structure depends on quantifying how discrete regions are integrated within the broader cortical landscape. Recent work established that macroscale brain organization and function can be described in a compact manner with multivariate machine learning approaches that identify manifolds often described as cortical gradients. By quantifying topographic principles of macroscale organization, cortical gradients lend an analytical framework to study structural and functional brain organization across species, throughout development and aging, and its perturbations in disease. Here, we present BrainSpace, a Python/Matlab toolbox for (i) the identification of gradients, (ii) their alignment, and (iii) their visualization. Our toolbox furthermore allows for controlled association studies between gradients with other brain-level features, adjusted with respect to null models that account for spatial autocorrelation. Validation experiments demonstrate the usage and consistency of our tools for the analysis of functional and microstructural gradients across different spatial scales

    Cortical microstructural gradients capture memory network reorganization in temporal lobe epilepsy

    No full text
    Temporal lobe epilepsy (TLE), one of the most common pharmaco-resistant epilepsies, is associated with pathology of paralimbic brain regions, particularly in the mesiotemporal lobe. Cognitive dysfunction in TLE is frequent, and particularly affects episodic memory. Crucially, these difficulties challenge the quality of life of patients, sometimes more than seizures, underscoring the need to assess neural processes of cognitive dysfunction in TLE to improve patient management. Our work harnessed a novel conceptual and analytical approach to assess spatial gradients of microstructural differentiation between cortical areas based on high-resolution MRI analysis. Gradients track region-to-region variations in intracortical lamination and myeloarchitecture, serving as a system-level measure of structural and functional reorganization. Comparing cortex-wide microstructural gradients between 21 patients and 35 healthy controls, we observed a reorganization of this gradient in TLE driven by reduced microstructural differentiation between paralimbic cortices and the remaining cortex with marked abnormalities in ipsilateral temporopolar and dorsolateral prefrontal regions. Findings were replicated in an independent cohort. Using an independent post-mortem dataset, we observed that in vivo findings reflected topographical variations in cortical cytoarchitecture. We indeed found that macroscale changes in microstructural differentiation in TLE reflected increased similarity of paralimbic and primary sensory/motor regions. Disease-related transcriptomics could furthermore show specificity of our findings to TLE over other common epilepsy syndromes. Finally, microstructural dedifferentiation was associated with cognitive network reorganization seen during an episodic memory functional MRI paradigm and correlated with interindividual differences in task accuracy. Collectively, our findings showing a pattern of reduced microarchitectural differentiation between paralimbic regions and the remaining cortex provide a structurally-grounded explanation for large-scale functional network reorganization and cognitive dysfunction characteristic of TLE.11Nsciescopu
    corecore