50 research outputs found
Mutual Avoidance in the Spectacled Salamander and Centipede: A Discrepancy between Exploratory Field and Laboratory Data
Interactions between amphibians and arthropods encompass a wide range of ecological relationships, predominantly characterized by predator–prey dynamics, with adult amphibians as the predators. In some instances, the roles are reversed. This study focuses on the potential predator-prey relationship between the spectacled salamander (Salamandrina perspicillata) and the centipede Scolopendra cingulata in Central Italy. Building upon previous research on chemical cue perception in amphibians, we investigated potential olfactory cue-mediated avoidance behaviours exhibited by S. perspicillata towards the potential predator S. cingulata through field observations and manipulative experiments. In a natural site, we estimated the degree of negative co-occurrence between the study species under shelters and found an avoidance pattern between S. perspicillata and S. cingulata in refuges. However, when the study species were forced to choose between sharing or not sharing a given shelter, through a manipulative experiment, the avoidance pattern was not confirmed. Potential determinants contributing to the avoidance pattern observed in nature are discussed. Our exploratory results represent a good example of how what often appears to be a strong observation-based pattern in natural settings needs to be carefully scrutinized. Hypotheses testing through experiments in controlled environments remains a valuable approach to exclude potentially misleading processes
Simple top-down preparation of magnetic BiGdFeTiO nanoparticles by ultrasonication of multiferroic bulk material
We present a simple technique to synthesize ultrafine nanoparticles directly
from bulk multiferroic perovskite powder. The starting materials, which were
ceramic pellets of the nominal compositions of
BiGdFeTiO (x = 0.00-0.20), were prepared
initially by a solid state reaction technique, then ground into
micrometer-sized powders and mixed with isopropanol or water in an ultrasonic
bath. The particle size was studied as a function of sonication time with
transmission electron microscopic imaging and electron diffraction that
confirmed the formation of a large fraction of single-crystalline nanoparticles
with a mean size of 11-13 nm. A significant improvement in the magnetic
behavior of BiGdFeTiO nanoparticles compared to
their bulk counterparts was observed at room temperature. This sonication
technique may be considered as a simple and promising route to prepare
ultrafine nanoparticles for functional applications.Comment: 7 pages, 5 figure
Spontaneous development of Epstein-Barr Virus associated human lymphomas in a prostate cancer xenograft program
Prostate cancer research is hampered by the lack of in vivo preclinical models that accurately reflect patient tumour biology and the clinical heterogeneity of human prostate cancer. To overcome these limitations we propagated and characterised a new collection of patient-derived prostate cancer xenografts. Tumour fragments from 147 unsupervised, surgical prostate samples were implanted subcutaneously into immunodeficient Rag2-/-γC-/- mice within 24 hours of surgery. Histologic and molecular characterisation of xenografts was compared with patient characteristics, including androgen-deprivation therapy, and exome sequencing. Xenografts were established from 47 of 147 (32%) implanted primary prostate cancers. Only 14% passaged successfully resulting in 20 stable lines; derived from 20 independent patient samples. Surprisingly, only three of the 20 lines (15%) were confirmed as prostate cancer; one line comprised of mouse stroma, and 16 were verified as human donor-derived lymphoid neoplasms. PCR for Epstein-Barr Virus (EBV) nuclear antigen, together with exome sequencing revealed that the lymphomas were exclusively EBV-associated. Genomic analysis determined that 14 of the 16 EBV+ lines had unique monoclonal or oligoclonal immunoglobulin heavy chain gene rearrangements, confirming their B-cell origin. We conclude that the generation of xenografts from tumour fragments can commonly result in B-cell lymphoma from patients carrying latent EBV. We recommend routine screening, of primary outgrowths, for latent EBV to avoid this phenomenon
Real-Time Nanoparticle–Cell Interactions in Physiological Media by Atomic Force Microscopy
Particle–cell interactions in physiological media are important in determining the fate and transport of nanoparticles and biological responses to them. In this work, these interactions are assessed in real time using a novel atomic force microscopy (AFM) based platform. Industry-relevant CeO2 and Fe2O3 engineered nanoparticles (ENPs) of two primary particle sizes were synthesized by the flame spray pyrolysis (FSP) based Harvard Versatile Engineering Nanomaterials Generation System (Harvard VENGES) and used in this study. The ENPs were attached on AFM tips, and the atomic force between the tip and lung epithelia cells (A549), adhered on a substrate, was measured in biological media, with and without the presence of serum proteins. Two metrics were used to assess the nanoparticle cell: the detachment force required to separate the ENP from the cell and the number of bonds formed between the cell and the ENPs. The results indicate that these atomic level ENP–cell interaction forces strongly depend on the physiological media. The presence of serum proteins reduced both the detachment force and the number of bonds by approximately 50% indicating the important role of the protein corona on the particle cell interactions. Additionally, it was shown that particle to cell interactions were size and material dependent