1,182 research outputs found

    Interfacial effects on the polarization of BiFeO3BiFeO_{3} films

    Full text link
    By considering an interfacial layer between the electrode and the BiFeO3BiFeO_{3}(BFOBFO) layer, the polarization and the hysteresis behavior of BFOBFO film are simulated. It is found that the non-ferroelectric interface will increase the coercive field, and remarkably suppress the polarization of the ultrathin film under low applied fields. Due to the competition between the interfacial effect and the internal compressive stress, the maximum polarization on the P-E loop of a BFOBFO film can be independent on the film thickness under an adequate applied field.Comment: 3 pages, 2 figure

    Ground state and constrained domain walls in Gd/Fe multilayers

    Full text link
    The magnetic ground state of antiferromagnetically coupled Gd/Fe multilayers and the evolution of in-plane domain walls is modelled with micromagnetics. The twisted state is characterised by a rapid decrease of the interface angle with increasing magnetic field. We found that for certain ratios M(Fe):M(Gd), the twisted state is already present at low fields. However, the magnetic ground state is not only determined by the ratio M(Fe):M(Gd) but also by the thicknesses of the layers, that is the total moments of the layer. The dependence of the magnetic ground state is explained by the amount of overlap of the domain walls at the interface. Thicker layers suppress the Fe aligned and the Gd aligned state in favour of the twisted state. Whereas ultrathin layers exclude the twisted state, since wider domain walls can not form in these ultrathin layers

    Magnetodielectric coupling in a triangular Ising lattice

    Full text link
    Dielectric constant measurement under magnetic field is an efficient technique to study the coupling between charges and spins in insulating materials. For magnetic oxides, the geometric frustration is known to be a key ingredient to observe such a coupling. Measurements for the triangular Ising-like cobaltite Ca3Co2O6 have been made. Single crystals of Ca3Co2O6 are found to exhibit a magnetodielectric effect below TN=25K with a peak in the e(H) curve at the ferri to ferromagnetic transition. This relation between e and magnetization has been modelized by using two order parameters in an energy expansion derived from the Landau formalism and the fluctuation-dissipation theorem. This result emphasizes the great potential of insulating transition metal oxides for the search of magnetodielectric effect

    Flexomagnetoelectric effect in bismuth ferrite

    Full text link
    There is a profound analogy between inhomogeneous magnetoelectric effect in multiferroics and flexoelectric effect in liquid crystals. This similarity gives rise to the flexomagnetoelectric polarization induced by spin modulation. The theoretical estimations of flexomagnetoelectric polarization agree with the value of jumps of polarization in magnetoelectric dependences (~20muC/m^2) observed at spin cycloid suppression at critical magnetic field 200kOe.Comment: 6 pages,2 figure

    Microvasculaire vrije lap-reconstructies in de mondholte en orofarynx: Naar een betere kwaliteit van leven

    Get PDF
    Reconstructive objectives after major head and neck surgery include adequate wound healing and optimal residual function. The most appropriate means to achieve this is through the applications of microvascular free flaps. Mainly defects in the oral cavity and oropharynx are reconstructed in this way. The most often used flap is the free radial forearm flap. When bulk or bone is needed other free flaps such as the rectus abdominis flap, the lattisimus dorsi flap, fibula flap or iliac crest flap can be used. The overall success rate is more than 90% and is mainly determined by the patency of the vessels. Comorbidity is an important prognostic factor. Using free flap reconstructions a good quality of life can be achieved. The costs of free flap reconstructions are not higher than reconstructions using pedicled flaps

    Atomic and electronic structure of twin growth defects in magnetite

    Get PDF
    We report the existence of a stable twin defect in Fe3O4 thin films. By using aberration corrected scanning transmission electron microscopy and spectroscopy the atomic structure of the twin boundary has been determined. The boundary is confined to the (111) growth plane and it is non-stoichiometric due to a missing Fe octahedral plane. By first principles calculations we show that the local atomic structural configuration of the twin boundary does not change the nature of the superexchange interactions between the two Fe sublattices across the twin grain boundary. Besides decreasing the half-metallic band gap at the boundary the altered atomic stacking at the boundary does not change the overall ferromagnetic (FM) coupling between the grains

    Atomic and electronic structure of twin growth defects in magnetite

    Get PDF
    We report the existence of a stable twin defect in Fe3O4 thin films. By using aberration corrected scanning transmission electron microscopy and spectroscopy the atomic structure of the twin boundary has been determined. The boundary is confined to the (111) growth plane and it is non-stoichiometric due to a missing Fe octahedral plane. By first principles calculations we show that the local atomic structural configuration of the twin boundary does not change the nature of the superexchange interactions between the two Fe sublattices across the twin grain boundary. Besides decreasing the half-metallic band gap at the boundary the altered atomic stacking at the boundary does not change the overall ferromagnetic (FM) coupling between the grains

    Enhanced magnetic moment and conductive behavior in NiFe2O4 spinel ultrathin films

    Full text link
    Bulk NiFe2O4 is an insulating ferrimagnet. Here, we report on the epitaxial growth of spinel NiFe2O4 ultrathin films onto SrTiO3 single-crystals. We will show that - under appropriate growth conditions - epitaxial stabilization leads to the formation of a spinel phase with magnetic and electrical properties that radically differ from those of the bulk material : an enhanced magnetic moment (Ms) - about 250% larger - and a metallic character. A systematic study of the thickness dependence of Ms allows to conclude that its enhanced value is due to an anomalous distribution of the Fe and Ni cations among the A and B sites of the spinel structure resulting from the off-equilibrium growth conditions and to interface effects. The relevance of these findings for spinel- and, more generally, oxide-based heterostructures is discussed. We will argue that this novel material could be an alternative ferromagetic-metallic electrode in magnetic tunnel junctions.Comment: accepted for publication in Phys. Rev.
    • …
    corecore