144 research outputs found

    Recurrence of complement factor H-related protein 5 nephropathy in a renal transplant.

    Get PDF
    Complement factor H-related protein 5 (CFHR5) nephropathy is a familial renal disease endemic in Cyprus. It is characterized by persistent microscopic hematuria, synpharyngitic macroscopic hematuria and progressive renal impairment. Isolated glomerular accumulation of complement component 3 (C3) is typical with variable degrees of glomerular inflammation. Affected individuals have a heterozygous internal duplication in the CFHR5 gene, although the mechanism through which this mutation results in renal disease is not understood. Notably, the risk of progressive renal failure in this condition is higher in males than females. We report the first documented case of recurrence of CFHR5 nephropathy in a renal transplant in a 53-year-old Cypriot male. Strikingly, histological changes of CFHR5 nephropathy were evident in the donor kidney 46 days post-transplantation. This unique case demonstrates that renal-derived CFHR5 protein cannot prevent the development of CFHR5 nephropathy

    Comorbidity and Sex-Related Differences in Mortality in Oxygen-Dependent Chronic Obstructive Pulmonary Disease

    Get PDF
    Background: It is not known why survival differs between men and women in oxygen-dependent chronic obstructive pulmonary disease (COPD). The present study evaluates differences in comorbidity between men and women, and tests the hypothesis that comorbidity contributes to sex-related differences in mortality in oxygen-dependent COPD. Methods: National prospective study of patients aged 50 years or older, starting long-term oxygen therapy (LTOT) for COPD in Sweden between 1992 and 2008. Comorbidities were obtained from the Swedish Hospital Discharge Register. Sex-related differences in comorbidity were estimated using logistic regression, adjusting for age, smoking status and year of inclusion. The effect of comorbidity on overall mortality and the interaction between comorbidity and sex were evaluated using Cox regression, adjusting for age, sex, Pa O2 breathing air, FEV 1, smoking history and year of inclusion. Results: In total, 8,712 patients (55 % women) were included and 6,729 patients died during the study period. No patient was lost to follow-up. Compared with women, men had significantly more arrhythmia, cancer, ischemic heart disease and renal failure, and less hypertension, mental disorders, osteoporosis and rheumatoid arthritis (P,0.05 for all odds ratios). Comorbidity was an independent predictor of mortality, and the effect was similar for the sexes. Women had lower mortality, which remained unchanged even after adjusting for comorbidity; hazard ratio 0.73 (95 % confidence interval, 0.68–0.77; P,0.001)

    Future perspectives in melanoma research: meeting report from the "Melanoma Bridge";: Napoli, December 3rd-6th 2014.

    Get PDF
    The fourth "Melanoma Bridge Meeting" took place in Naples, December 3-6th, 2014. The four topics discussed at this meeting were: Molecular and Immunological Advances, Combination Therapies, News in Immunotherapy, and Tumor Microenvironment and Biomarkers. Until recently systemic therapy for metastatic melanoma patients was ineffective, but recent advances in tumor biology and immunology have led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS). New therapies, such as mitogen-activated protein kinase (MAPK) pathway inhibitors as well as other signaling pathway inhibitors, are being tested in patients with metastatic melanoma either as monotherapy or in combination, and all have yielded promising results. These include inhibitors of receptor tyrosine kinases (BRAF, MEK, and VEGFR), the phosphatidylinositol 3 kinase (PI3K) pathway [PI3K, AKT, mammalian target of rapamycin (mTOR)], activators of apoptotic pathway, and the cell cycle inhibitors (CDK4/6). Various locoregional interventions including radiotherapy and surgery are still valid approaches in treatment of advanced melanoma that can be integrated with novel therapies. Intrinsic, adaptive and acquired resistance occur with targeted therapy such as BRAF inhibitors, where most responses are short-lived. Given that the reactivation of the MAPK pathway through several distinct mechanisms is responsible for the majority of acquired resistance, it is logical to combine BRAF inhibitors with inhibitors of targets downstream in the MAPK pathway. For example, combination of BRAF/MEK inhibitors (e.g., dabrafenib/trametinib) have been demonstrated to improve survival compared to monotherapy. Application of novel technologies such sequencing have proven useful as a tool for identification of MAPK pathway-alternative resistance mechanism and designing other combinatorial therapies such as those between BRAF and AKT inhibitors. Improved survival rates have also been observed with immune-targeted therapy for patients with metastatic melanoma. Immune-modulating antibodies came to the forefront with anti-CTLA-4, programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) pathway blocking antibodies that result in durable responses in a subset of melanoma patients. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors and other approaches such as adoptive cell transfer demonstrate clinical benefit in patients with melanoma as well. These agents are being studied in combination with targeted therapies in attempt to produce longer-term responses than those more typically seen with targeted therapy. Other combinations with cytotoxic chemotherapy and inhibitors of angiogenesis are changing the evolving landscape of therapeutic options and are being evaluated to prevent or delay resistance and to further improve survival rates for this patient population. This meeting's specific focus was on advances in combination of targeted therapy and immunotherapy. Both combination targeted therapy approaches and different immunotherapies were discussed. Similarly to the previous meetings, the importance of biomarkers for clinical application as markers for diagnosis, prognosis and prediction of treatment response was an integral part of the meeting. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into contemporary clinical management of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma

    Bisphosphonates antagonise bone growth factors' effects on human breast cancer cells survival

    Get PDF
    Bone tissue constitutes a fertile 'soil' for metastatic tumours, notably breast cancer. High concentrations of growth factors in bone matrix favour cancer cell proliferation and survival, and a vicious cycle settles between bone matrix, osteoclasts and cancer cells. Classically, bisphosphonates interrupt this vicious cycle by inhibiting osteoclast-mediated bone resorption. We and others recently reported that bisphosphonates can also induce human breast cancer cell death in vitro, which could contribute to their beneficial clinical effects. We hypothesised that bisphosphonates could inhibit the favourable effects of 'bone-derived' growth factors, and indeed found that bisphosphonates reduced or abolished the stimulatory effects of growth factors (IGFs, FGF-2) on MCF-7 and T47D cell proliferation and inhibited their protective effects on apoptotic cell death in vitro under serum-free conditions. This could happen through an interaction with growth factors' intracellular phosphorylation transduction pathways, such as ERK1/2-MAPK. In conclusion, we report that bisphosphonates antagonised the stimulatory effects of growth factors on human breast cancer cell survival and reduced their protective effects against apoptotic cell death. Bisphosphonates and growth factors thus appear to be concurrent compounds for tumour cell growth and survival in bone tissue. This could represent a new mechanism of action of bisphosphonates in their protective effects against breast cancer-induced osteolysis.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Breast cancer growth and metastasis: interplay between cancer stem cells, embryonic signaling pathways and epithelial-to-mesenchymal transition

    Get PDF
    Induction of epithelial-to-mesenchymal transition (EMT) in cancer stem cells (CSCs) can occur as the result of embryonic pathway signaling. Activation of Hedgehog (Hh), Wnt, Notch, or transforming growth factor-β leads to the upregulation of a group of transcriptional factors that drive EMT. This process leads to the transformation of adhesive, non-mobile, epithelial-like tumor cells into cells with a mobile, invasive phenotype. CSCs and the EMT process are currently being investigated for the role they play in driving metastatic tumor formation in breast cancer. Both are very closely associated with embryonic signaling pathways that stimulate self-renewal properties of CSCs and EMT-inducing transcription factors. Understanding these mechanisms and embryonic signaling pathways may lead to new opportunities for developing therapeutic agents to help prevent metastasis in breast cancer. In this review, we examine embryonic signaling pathways, CSCs, and factors affecting EMT

    Spatial navigation deficits — overlooked cognitive marker for preclinical Alzheimer disease?

    Get PDF
    Detection of incipient Alzheimer disease (AD) pathophysiology is critical to identify preclinical individuals and target potentially disease-modifying therapies towards them. Current neuroimaging and biomarker research is strongly focused in this direction, with the aim of establishing AD fingerprints to identify individuals at high risk of developing this disease. By contrast, cognitive fingerprints for incipient AD are virtually non-existent as diagnostics and outcomes measures are still focused on episodic memory deficits as the gold standard for AD, despite their low sensitivity and specificity for identifying at-risk individuals. This Review highlights a novel feature of cognitive evaluation for incipient AD by focusing on spatial navigation and orientation deficits, which are increasingly shown to be present in at-risk individuals. Importantly, the navigation system in the brain overlaps substantially with the regions affected by AD in both animal models and humans. Notably, spatial navigation has fewer verbal, cultural and educational biases than current cognitive tests and could enable a more uniform, global approach towards cognitive fingerprints of AD and better cognitive treatment outcome measures in future multicentre trials. The current Review appraises the available evidence for spatial navigation and/or orientation deficits in preclinical, prodromal and confirmed AD and identifies research gaps and future research priorities

    Breast cancer epithelial-to-mesenchymal transition: examining the functional consequences of plasticity

    Get PDF
    The epithelial-to-mesenchymal transition (EMT) is a critical developmental process that has recently come to the forefront of cancer biology. In breast carcinomas, acquisition of a mesenchymal-like phenotype that is reminiscent of an EMT, termed oncogenic EMT, is associated with pro-metastatic properties, including increased motility, invasion, anoikis resistance, immunosuppression and cancer stem cell characteristics. This oncogenic EMT is a consequence of cellular plasticity, which allows for interconversion between epithelial and mesenchymal-like states, and is thought to enable tumor cells not only to escape from the primary tumor, but also to colonize a secondary site. Indeed, the plasticity of cancer cells may explain the range of pro-metastatic traits conferred by oncogenic EMT, such as the recently described link between EMT and cancer stem cells and/or therapeutic resistance. Continued research into this relationship will be critical in developing drugs that block mechanisms of breast cancer progression, ultimately improving patient outcomes

    Systematic evaluation of immune regulation and modulation

    Get PDF
    Cancer immunotherapies are showing promising clinical results in a variety of malignancies. Monitoring the immune as well as the tumor response following these therapies has led to significant advancements in the field. Moreover, the identification and assessment of both predictive and prognostic biomarkers has become a key component to advancing these therapies. Thus, it is critical to develop systematic approaches to monitor the immune response and to interpret the data obtained from these assays. In order to address these issues and make recommendations to the field, the Society for Immunotherapy of Cancer reconvened the Immune Biomarkers Task Force. As a part of this Task Force, Working Group 3 (WG3) consisting of multidisciplinary experts from industry, academia, and government focused on the systematic assessment of immune regulation and modulation. In this review, the tumor microenvironment, microbiome, bone marrow, and adoptively transferred T cells will be used as examples to discuss the type and timing of sample collection. In addition, potential types of measurements, assays, and analyses will be discussed for each sample. Specifically, these recommendations will focus on the unique collection and assay requirements for the analysis of various samples as well as the high-throughput assays to evaluate potential biomarkers

    Ubiquitous molecular substrates for associative learning and activity-dependent neuronal facilitation.

    Get PDF
    Recent evidence suggests that many of the molecular cascades and substrates that contribute to learning-related forms of neuronal plasticity may be conserved across ostensibly disparate model systems. Notably, the facilitation of neuronal excitability and synaptic transmission that contribute to associative learning in Aplysia and Hermissenda, as well as associative LTP in hippocampal CA1 cells, all require (or are enhanced by) the convergence of a transient elevation in intracellular Ca2+ with transmitter binding to metabotropic cell-surface receptors. This temporal convergence of Ca2+ and G-protein-stimulated second-messenger cascades synergistically stimulates several classes of serine/threonine protein kinases, which in turn modulate receptor function or cell excitability through the phosphorylation of ion channels. We present a summary of the biophysical and molecular constituents of neuronal and synaptic facilitation in each of these three model systems. Although specific components of the underlying molecular cascades differ across these three systems, fundamental aspects of these cascades are widely conserved, leading to the conclusion that the conceptual semblance of these superficially disparate systems is far greater than is generally acknowledged. We suggest that the elucidation of mechanistic similarities between different systems will ultimately fulfill the goal of the model systems approach, that is, the description of critical and ubiquitous features of neuronal and synaptic events that contribute to memory induction
    corecore