234 research outputs found

    Olfactory information processing viewed through mitral and tufted cell-specific channels

    Get PDF
    Parallel processing is a fundamental strategy of sensory coding. Through this processing, unique and distinct features of sensations are computed and projected to the central targets. This review proposes that mitral and tufted cells, which are the second-order projection neurons in the olfactory bulb, contribute to parallel processing within the olfactory system. Based on anatomical and functional evidence, I discuss potential features that could be conveyed through the unique channel formed by these neurons

    Relaxing and Inhibitory Actions of Pedal Ganglion Extracts on the Anterior Byssus Retractor Muscle of Mytilus

    Get PDF
    Pedal ganglion homogenates from the bivalve, Mytilus edulis, were subjected to gel filtration and the biological activities of the extracts were assayed on the ABRM of the mussel. The extracts resolved into a catch-relaxing peak and a contraction-inhibiting peak of activities. Relaxation of ACh-induced catch tension in the ABRM by catch-relaxing peak was not affected by pretreatment of the muscle with 10^-5 M FMRFamide, suggesting that the active principle of the peak is not FMRFamide. The relaxation was blocked by 5 x 10^-4 M mersalyl, which suggests that the active substance is neither dopamine nor octopamine. The relaxation was markedly depressed after the muscle had been denervated by treating it with KCl-EGTA solution, suggesting that the substance is not serotonin and that it relaxes the catch tension acting on intramuscular relaxing nerve elements. The relaxing activity of the peak was destroyed by incubating it with a protease, subtilisin. Thus, the active substance in the peak seems to be a peptide which acts presynaptically to increase the release of relaxing transmitter serotonin. The contraction-inhibiting peak also lost its activity when incubated with subtilisin, suggesting that the inhibitory substance in the peak is also a peptide. The substance inhibited not only phasic contraction by repetitive electrical stimulation but also ACh contraction and FMRFamide contraction, which suggests that it acts directly on muscle fibres to inhibit the contractions

    Itokawa's Opposition Surge seen by Hayabusa/AMICA

    Get PDF
    Using images acquired by the Hayabusa/AMICA instrument, along with Lederer et al.'s (2008) ground-based observations, we re-examine Itokawa's disk-integrated phase curve. The AMICA images provide critical opposition measurements (between 0.7deg - 9.3deg phase at 540 nm). Using Hapke's model (2012), we fit the updated phase curves at 5 different wavelengths. Preliminary modeling results show a range of porosity values commensurate with those in the literature (Ostro et al. 2004, Gundlach and Blum, 2012, Kiuchi and Nakamura 2014) based on an impact-generated grain size distribution function and grain size range evaluations from the AMICA data (Yano et al. 2006). This wide range on a global porosity is indicative of a highly variable porosity across the surface. The derived transport mean free path and the generally forward scattering nature of the global regolith are indicative of scattering centers (such as cracks, bubbles, and inclusions) that are small compared to the observational wavelengths. The derived regolith properties are compared with the imaging and sample analysis results, providing a test of the predictive capabilities of global disk-integrated measurements. This work suggests that the sub-pixel grain information could be extracted from the photometry, especially around opposition

    Effects of hydrogen ion irradiation on zinc oxide etching

    Full text link
    Mechanisms of zinc oxide (ZnO) etching by hydrocarbon plasmas were investigated both experimentally and theoretically with the use of a mass-selected ion beam system and first-principle quantum mechanical (QM) simulation based on the density functional theory. The mass-selected ion beam experiments have shown that the sputtering yield of ZnO increases by a pretreatment of the ZnO film by energetic hydrogen (H) ion injections prior to heavy ion bombardment, suggesting that chemically enhanced etching of ZnO by hydrocarbon plasmas is closely related to hydrogen storage and/or formation of damage in the ZnO layer by energetic hydrogen injections. In this study, the effects of hydrogen storage in ZnO are examined. First-principle QM simulation of ZnO interacting with H atoms has shown that H atoms in ZnO form hydroxyl (OH) groups (or partially convert ZnO to ZnOH), which results in the weakening or breaking of the Zn-O bonds around H atoms and thus makes the ZnO film more prone to physical sputtering. The formation of hydroxyl groups in ZnO is also expected to occur in ZnO etching by hydrocarbon plasmas and increase its sputtering yields over those by inert-gas plasmas generated under similar conditions.H. Li et al., Journal of Vacuum Science & Technology A 35, 05C303 (2017) https://doi.org/10.1116/1.498271

    Boulder size and shape distributions on asteroid Ryugu

    Get PDF
    In 2018, the Japanese spacecraft Hayabusa2, arrived at the small asteroid Ryugu. The surface of this C-type asteroid is covered with numerous boulders whose size and shape distributions are investigated in this study. Using a few hundred Optical Navigation Camera (ONC) images with a pixel scale of approximately 0.65 m, we focus on boulders greater than 5m in diameter. Smaller boulders are also considered using five arbitrarily chosen ONC close-up images with pixel scales ranging from 0.7 to 6 cm. Across the entire surface area (~2.7 km2) of Ryugu, nearly 4400 boulders larger than 5m were identified. Boulders appear to be uniformly distributed across the entire surface, with some slight differences in latitude and longitude. At ~50 km−2, the number density of boulders larger than 20m is twice as large as on asteroid Itokawa (or Bennu). The apparent shapes of Ryugu's boulders resemble laboratory impact fragments, with larger boulders being more elongated. The ratio of the total volume of boulders larger than 5m to the total excavated volume of craters larger than 20m on Ryugu can be estimated to be ~94%, which is comparatively high. These observations strongly support the hypothesis that most boulders found on Ryugu resulted from the catastrophic disruption of Ryugu's larger parent body, as described in previous papers (Watanabe et al., 2019; Sugita et al.,2019). The cumulative size distribution of boulders larger than 5 m has a power-index of −2.65 ± 0.05, which is comparatively shallow compared with other asteroids visited by spacecraft. For boulders smaller than 4 m, the power-index is even shallower and ranges from −1.65 ± 0.05 to −2.01 ± 0.06. This particularly shallow power-index implies that some boulders are buried in Ryugu's regolith. Based on our observations, we suggest that boulders near the equator might have been buried by the migration of finer material and, as a result, the number density of boulders larger than 5 m in the equatorial region is lower than at higher latitudes

    Phase II study of S-1 plus leucovorin in patients with metastatic colorectal cancer

    Get PDF
    Background: S-1, a novel oral fluoropyrimidine, is well tolerated in patients with metastatic colorectal cancer (mCRC). The response rate of S-1 for colorectal cancer is high, ranging from 35% to 40%. This study aimed to evaluate the safety and efficacy of S-1 combined with oral leucovorin (LV) to enhance antitumor activity in chemotherapy-naive patients with mCRC

    Nonbacterial thrombotic endocarditis associated with cancer of unknown origin complicated with thrombus in the left auricular appendage: case report

    Get PDF
    A 63-year-old man was admitted to our hospital with a complaint of right lateroabdominal pain. He was diagnosed with metastatic colon cancer, and then developed multiple brain embolic infarctions 7 days after admission. Transesophageal echocardiography showed that mobile, echo-dense masses were attached to the anterior and posterior mitral valve leaflet. Furthermore, there was a thrombus in the left auricular appendage despite sinus rhythm. These findings led to a diagnosis of suspected infectious endocarditis with subsequent multiple brain infarctions. The patient's general condition worsened and he died 13 days after admission. An autopsy was performed, and, while poorly differentiated cancer was observed in multiple organs, no primary tumor could be identified. Histological analysis showed that the masses of the mitral valve consisted mainly of fibrin without bacteria or oncocytes. This patient was therefore diagnosed with nonbacterial thrombotic endocarditis associated with cancer of unknown origin complicated with thrombus in the left auricular appendage

    Exercise-induced left bundle branch block and subsequent mechanical left ventricular dyssynchrony -resolved with pharmacological therapy

    Get PDF
    A 53-year-old man with depressed ejection fraction (EF) of 35% and QRS width of 88 ms at rest was admitted to our institution with a complaint of exertional chest discomfort and dyspnea. During treadmill exercise, left bundle-branch block (LBBB) with a QRS width of 152 ms occurred at a heart rate of 100 bpm. During LBBB, the patient showed significant mechanical dyssynchrony as evidenced by a two-dimensional speckle tracking radial strain of 260 ms (≥130 ms), defined as the time difference between anterior-septum and posterior wall. Five-month after carvedilol and candesartan administration, EF had improved to 49% and LBBB did not occur until a heart rate of 126 bpm was attained during treadmill exercise. It appears that pharmacological therapy may be useful for patients with heart failure and exercise-induced LBBB

    Development History and Concept of an Oral Anticancer Agent S-1 (TS-1®): Its Clinical Usefulness and Future Vistas

    Get PDF
    Dushinsky et al. left a great gift to human beings with the discovery of 5-fluorouracil (5-FU). Approximately 50 years have elapsed from that discovery to the development of S-1 (TS-1®). The concept of developing an anticancer agent that simultaneously possesses both efficacy-enhancing and adverse reaction-reducing effects could be achieved only with a three-component combination drug. S-1 is an oral anticancer agent containing two biochemical modulators for 5-FU and tegafur (FT), a metabolically activated prodrug of 5-FU. The first modulator, 5-chloro-2,4-dihydroxypyridine (CDHP), enhances the pharmacological actions of 5-FU by potently inhibiting its degradation. The second modulator, potassium oxonate (Oxo), localizing in mucosal cells of the gastrointestinal (GI) tract after oral administration, reduces the incidence of GI toxicities by suppressing the activation of 5-FU in the GI tract. Thus, S-1 combines FT, CDHP and Oxo at a molar ratio of 1:0.4:1. In 1999–2007, S-1 was approved for the treatment of the following seven cancers: gastric, head and neck, colorectal, non-small cell lung, breast, pancreatic and biliary tract cancers. ‘S-1 and low-dose cisplatin therapy’ without provoking Grade 3 non-hematologic toxicities was proposed to enhance its clinical usefulness. Furthermore, ‘alternate-day S-1 regimen’ may improve the dosing schedule for 5-FU by utilizing its strongly time-dependent mode of action; the former is characterized by the low incidences of myelotoxicity and non-hematologic toxicities (e.g. ≤Grade 1 anorexia, fatigue, stomatitis, nausea, vomiting and taste alteration). These two approaches are considered to allow long-lasting therapy with S-1

    Strain dyssynchrony index determined by three-dimensional speckle area tracking can predict response to cardiac resynchronization therapy

    Get PDF
    <p>Abstract</p> <p><b>Background</b></p> <p>We have previously reported strain dyssynchrony index assessed by two-dimensional speckle tracking strain, and a marker of both dyssynchrony and residual myocardial contractility, can predict response to cardiac resynchronization therapy (CRT). A newly developed three-dimensional (3-D) speckle tracking system can quantify endocardial area change ratio (area strain), which coupled with the factors of both longitudinal and circumferential strain, from all 16 standard left ventricular (LV) segments using complete 3-D pyramidal datasets. Our objective was to test the hypothesis that strain dyssynchrony index using area tracking (ASDI) can quantify dyssynchrony and predict response to CRT.</p> <p><b>Methods</b></p> <p>We studied 14 heart failure patients with ejection fraction of 27 ± 7% (all≤35%) and QRS duration of 172 ± 30 ms (all≥120 ms) who underwent CRT. Echocardiography was performed before and 6-month after CRT. ASDI was calculated as the average difference between peak and end-systolic area strain of LV endocardium obtained from 3-D speckle tracking imaging using 16 segments. Conventional dyssynchrony measures were assessed by interventricular mechanical delay, Yu Index, and two-dimensional radial dyssynchrony by speckle-tracking strain. Response was defined as a ≥15% decrease in LV end-systolic volume 6-month after CRT.</p> <p>Results</p> <p>ASDI ≥ 3.8% was the best predictor of response to CRT with a sensitivity of 78%, specificity of 100% and area under the curve (AUC) of 0.93 (p < 0.001). Two-dimensional radial dyssynchrony determined by speckle-tracking strain was also predictive of response to CRT with an AUC of 0.82 (p < 0.005). Interestingly, ASDI ≥ 3.8% was associated with the highest incidence of echocardiographic improvement after CRT with a response rate of 100% (7/7), and baseline ASDI correlated with reduction of LV end-systolic volume following CRT (r = 0.80, p < 0.001).</p> <p><b>Conclusions</b></p> <p>ASDI can predict responders and LV reverse remodeling following CRT. This novel index using the 3-D speckle tracking system, which shows circumferential and longitudinal LV dyssynchrony and residual endocardial contractility, may thus have clinical significance for CRT patients.</p
    corecore