49 research outputs found

    Clinical and molecular features of an infant patient affected by Leigh Disease associated to m.14459G > A mitochondrial DNA mutation: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leigh Syndrome (LS) is a severe neurodegenerative disorder characterized by bilateral symmetrical necrotic lesions in the basal ganglia and brainstem. Onset is in early infancy and prognosis is poor. Causative mutations have been disclosed in mitochondrial DNA and nuclear genes affecting respiratory chain subunits and assembly factors.</p> <p>Case presentation</p> <p>Here we report the clinical and molecular features of a 15-month-old female LS patient. Direct sequencing of her muscle-derived mtDNA revealed the presence of two apparently homoplasmic variants: the novel m.14792C > G and the already known m.14459G > A resulting in p.His16Asp change in cytochrome b (MT-CYB) and p.Ala72Val substitution in ND6 subunit, respectively. The m.14459G > A was heteroplasmic in the mother's blood-derived DNA.</p> <p>Conclusions</p> <p>The m.14459G > A might lead to LS, complicated LS or Leber Optic Hereditary Neuropathy. A comprehensive re-evaluation of previously described 14459G > A-mutated patients does not explain this large clinical heterogeneity.</p

    Large meta-analysis of genome-wide association studies identifies five loci for lean body mass

    Get PDF
    Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 x 10(-8)) or suggestively genome wide (p < 2.3 x 10(-6)). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/ near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/ near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass

    Exercise-induced mitochondrial p53 repairs mtDNA mutations in mutator mice

    No full text
    Background: Human genetic disorders and transgenic mouse models have shown that mitochondrial DNA (mtDNA) mutations and telomere dysfunction instigate the aging process. Epidemiologically, exercise is associated with greater life expectancy and reduced risk of chronic diseases. While the beneficial effects of exercise are well established, the molecular mechanisms instigating these observations remain unclear. Results Endurance exercise reduces mtDNA mutation burden, alleviates multisystem pathology, and increases lifespan of the mutator mice, with proofreading deficient mitochondrial polymerase gamma (POLG1). We report evidence for a POLG1-independent mtDNA repair pathway mediated by exercise, a surprising notion as POLG1 is canonically considered to be the sole mtDNA repair enzyme. Here, we show that the tumor suppressor protein p53 translocates to mitochondria and facilitates mtDNA mutation repair and mitochondrial biogenesis in response to endurance exercise. Indeed, in mutator mice with muscle-specific deletion of p53, exercise failed to prevent mtDNA mutations, induce mitochondrial biogenesis, preserve mitochondrial morphology, reverse sarcopenia, or mitigate premature mortality. Conclusions Our data establish a new role for p53 in exercise-mediated maintenance of the mtDNA genome and present mitochondrially targeted p53 as a novel therapeutic modality for diseases of mitochondrial etiology.Health and Social Development, Faculty of (Okanagan)Non UBCHealth and Exercise Sciences, School of (Okanagan)ReviewedFacult
    corecore