50 research outputs found

    Suitability of PSA-detected localised prostate cancers for focal therapy: Experience from the ProtecT study

    Get PDF
    This article is available through a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. Copyright @ 2011 Cancer Research UK.Background: Contemporary screening for prostate cancer frequently identifies small volume, low-grade lesions. Some clinicians have advocated focal prostatic ablation as an alternative to more aggressive interventions to manage these lesions. To identify which patients might benefit from focal ablative techniques, we analysed the surgical specimens of a large sample of population-detected men undergoing radical prostatectomy as part of a randomised clinical trial. Methods: Surgical specimens from 525 men who underwent prostatectomy within the ProtecT study were analysed to determine tumour volume, location and grade. These findings were compared with information available in the biopsy specimen to examine whether focal therapy could be provided appropriately. Results: Solitary cancers were found in prostatectomy specimens from 19% (100 out of 525) of men. In addition, 73 out of 425 (17%) men had multiple cancers with a solitary significant tumour focus. Thus, 173 out of 525 (33%) men had tumours potentially suitable for focal therapy. The majority of these were small, well-differentiated lesions that appeared to be pathologically insignificant (38–66%). Criteria used to select patients for focal prostatic ablation underestimated the cancer's significance in 26% (34 out of 130) of men and resulted in overtreatment in more than half. Only 18% (24 out of 130) of men presumed eligible for focal therapy, actually had significant solitary lesions. Conclusion: Focal therapy appears inappropriate for the majority of men presenting with prostate-specific antigen-detected localised prostate cancer. Unifocal prostate cancers suitable for focal ablation are difficult to identify pre-operatively using biopsy alone. Most lesions meeting criteria for focal ablation were either more aggressive than expected or posed little threat of progression.National Institute for Health Researc

    Novel Murine Infection Models Provide Deep Insights into the “Ménage à Trois” of Campylobacter jejuni, Microbiota and Host Innate Immunity

    Get PDF
    BACKGROUND: Although Campylobacter jejuni-infections have a high prevalence worldwide and represent a significant socioeconomic burden, it is still not well understood how C. jejuni causes intestinal inflammation. Detailed investigation of C. jejuni-mediated intestinal immunopathology is hampered by the lack of appropriate vertebrate models. In particular, mice display colonization resistance against this pathogen. METHODOLOGY/PRINCIPAL FINDINGS: To overcome these limitations we developed a novel C. jejuni-infection model using gnotobiotic mice in which the intestinal flora was eradicated by antibiotic treatment. These animals could then be permanently associated with a complete human (hfa) or murine (mfa) microbiota. After peroral infection C. jejuni colonized the gastrointestinal tract of gnotobiotic and hfa mice for six weeks, whereas mfa mice cleared the pathogen within two days. Strikingly, stable C. jejuni colonization was accompanied by a pro-inflammatory immune response indicated by increased numbers of T- and B-lymphocytes, regulatory T-cells, neutrophils and apoptotic cells, as well as increased concentrations of TNF-α, IL-6, and MCP-1 in the colon mucosa of hfa mice. Analysis of MyD88(-/-), TRIF(-/-), TLR4(-/-), and TLR9(-/-) mice revealed that TLR4- and TLR9-signaling was essential for immunopathology following C. jejuni-infection. Interestingly, C. jejuni-mutant strains deficient in formic acid metabolism and perception induced less intestinal immunopathology compared to the parental strain infection. In summary, the murine gut flora is essential for colonization resistance against C. jejuni and can be overcome by reconstitution of gnotobiotic mice with human flora. Detection of C. jejuni-LPS and -CpG-DNA by host TLR4 and TLR9, respectively, plays a key role in immunopathology. Finally, the host immune response is tightly coupled to bacterial formic acid metabolism and invasion fitness. CONCLUSION/SIGNIFICANCE: We conclude that gnotobiotic and "humanized" mice represent excellent novel C. jejuni-infection and -inflammation models and provide deep insights into the immunological and molecular interplays between C. jejuni, microbiota and innate immunity in human campylobacteriosis

    The genomic architecture of resistance to Campylobacter jejuni intestinal colonisation in chickens

    Get PDF
    Campylobacter is the leading cause of foodborne diarrhoeal illness in humans and is mostly acquired from consumption or handling of contaminated poultry meat. In the absence of effective licensed vaccines and inhibitors, selection for chickens with increased resistance to Campylobacter could potentially reduce its subsequent entry into the food chain. Campylobacter intestinal colonisation levels are influenced by the host genetics of the chicken. In the present study, two chicken populations were used to investigate the genetic architecture of avian resistance to colonisation: (i) a back-cross of two White Leghorn derived inbred lines [(61 x N) x N] known to differ in resistance to Campylobacter colonisation and (ii) a 9th generation advanced intercross (61 x N) line

    Evolution records a Mx tape for anti-viral immunity

    Get PDF
    Viruses impose diverse and dynamic challenges on host defenses. Diversifying selection of codons and gene copy number variation are two hallmarks of genetic innovation in antiviral genes engaged in host-virus genetic conflicts. The myxovirus resistance (Mx) genes encode interferon-inducible GTPases that constitute a major arm of the cell-autonomous defense against viral infection. Unlike the broad antiviral activity of MxA, primate MxB was recently shown to specifically inhibit lentiviruses including HIV-1. We carried out detailed evolutionary analyses to investigate whether genetic conflict with lentiviruses has shaped MxB evolution in primates. We found strong evidence for diversifying selection in the MxB N-terminal tail, which contains molecular determinants of MxB anti-lentivirus specificity. However, we found no overlap between previously-mapped residues that dictate lentiviral restriction and those that have evolved under diversifying selection. Instead, our findings are consistent with MxB having a long-standing and important role in the interferon response to viral infection against a broader range of pathogens than is currently appreciated. Despite its critical role in host innate immunity, we also uncovered multiple functional losses of MxB during mammalian evolution, either by pseudogenization or by gene conversion from MxA genes. Thus, although the majority of mammalian genomes encode two Mx genes, this apparent stasis masks the dramatic effects that recombination and diversifying selection have played in shaping the evolutionary history of Mx genes. Discrepancies between our study and previous publications highlight the need to account for recombination in analyses of positive selection, as well as the importance of using sequence datasets with appropriate depth of divergence. Our study also illustrates that evolutionary analyses of antiviral gene families are critical towards understanding molecular principles that govern host-virus interactions and species-specific susceptibility to viral infection

    Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue.

    Get PDF
    Genome-wide DNA sequencing was used to decrypt the phylogeny of multiple samples from distinct areas of cancer and morphologically normal tissue taken from the prostates of three men. Mutations were present at high levels in morphologically normal tissue distant from the cancer, reflecting clonal expansions, and the underlying mutational processes at work in morphologically normal tissue were also at work in cancer. Our observations demonstrate the existence of ongoing abnormal mutational processes, consistent with field effects, underlying carcinogenesis. This mechanism gives rise to extensive branching evolution and cancer clone mixing, as exemplified by the coexistence of multiple cancer lineages harboring distinct ERG fusions within a single cancer nodule. Subsets of mutations were shared either by morphologically normal and malignant tissues or between different ERG lineages, indicating earlier or separate clonal cell expansions. Our observations inform on the origin of multifocal disease and have implications for prostate cancer therapy in individual cases

    Human cellular restriction factors that target HIV-1 replication

    Get PDF
    Recent findings have highlighted roles played by innate cellular factors in restricting intracellular viral replication. In this review, we discuss in brief the activities of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G), bone marrow stromal cell antigen 2 (BST-2), cyclophilin A, tripartite motif protein 5 alpha (Trim5α), and cellular microRNAs as examples of host restriction factors that target HIV-1. We point to countermeasures encoded by HIV-1 for moderating the potency of these cellular restriction functions

    Host restriction factors in retroviral infection: promises in virus-host interaction

    Get PDF

    Seroprevalence of Pediatric Malaria in Quetta, Balochistan, Pakistan

    No full text
    Background: Malaria is one of the most devastating protozoal diseases in under developing coun­tries like Pakistan where health facilities are scarce. It is the second most frequently reported disease with 4.5 million suspected cases in Pakistan. The current study was designed to determine the inci­dence of pediatric malaria in Quetta, Balochistan.Methods: The study was conducted at Children Hospital Quetta (CHQ) during July 2011march 2012. Blood samples were collected from 3418 clinically suspected and were evaluated using thin and thick blood films stained with Giemsa stain.Results: Out of 3418 total of 230 (6.72%) children were found positive for any of the malarial para­sitic infestation. Plasmodium vivax was observed to be more common 54.34 % (n= 125/230) than P. falciparum 44.78% (n=103/230). Male children were 65.21% (150/230) i.e. two times more com­monly affected than female 34.78% (80/230) children. The prevalence among age groups was 7.41% (n=89/1200) in preschool-aged children aged 1-5 years, 7.11% (n=75/1054) in school-aged children aged 6—10 years while 6.78% (n=46/678) in 11-15 years-old children, and 6.66% (n=20/300) in >15 year-olds children. Peak prevalence was noted in summer and mild in winter. Mixed infection of (0.86%: 2/230) P. vivax and P. falciparum was also observed in two cases although no case of P. mala­riae or P. ovale infection was seen during entire study.Conclusion: The results reflect the higher prevalence of malaria in Quetta, Pakistan that poses a signifi­cant health threat and requires urgent attention of high-ups to launch programme to control the disease in the are
    corecore