56 research outputs found

    Chadronian insectivores of the Cypress Hills

    Get PDF
    The Cypress Hills Formation of Saskatchewan preserves sediments of Uintan (middle Eocene) to Hemingfordian (middle Miocene) age, but the best-represented period is the Chadronian North American Land Mammal Age. The best-known site, with the richest biodiversity known for the area, is the middle Chadronian Calf Creek Locality, from which over 70 mammal and 25 non-mammal species are known. The majority of these taxa have been described in the literature, but the portion of the fauna which includes the "insectivores," members of the orders Leptictida, Apatotheria, and Lipotyphla, have not been formally described. The following thesis identifies and describes the insectivores and chiropterans of the Calf Creek Locality, together with the same groups from the nearby Chadronian-aged Horse Locality. The inclusion of the Horse Locality specimens serves three purposes: (1) to begin the formal description of material from the Horse Locality, (2) to compare the two faunas to identify possible differences between the two, and (3) to allow for analysis of the implications of any faunal differences in terms of age and environment of the two sites. The insectivore faunas of the two sites are found to be very similar, with the same genera and common species occurring at both localities. Six species-level differences are reported, all within relatively rare taxa; in most cases rare taxa were found at the Calf Creek but not at the Horse Locality. It seems likely that most of the specific differences result from the smaller collection size of the Horse Locality rather than from age-related species turnover. Although the non-insectivore taxa suggest that the Horse Locality dates from either later in the middle Chadronian or the Late Chadronian, an evolutionary change between the Calf Creek and the Horse localities could not be confirmed in the groups studied here

    Genes Involved in Feed Efficiency Identified in a Meta-Analysis of Rumen Tissue from Two Populations of Beef Steers

    Get PDF
    In cattle, the rumen is an important site for the absorption of feed by-products released by bacterial fermentation, and variation in ruminal function plays a role in cattle feed efficiency. Studies evaluating gene expression in the rumen tissue have been performed prior to this. However, validating the expression of genes identified in additional cattle populations has been challenging. The purpose of this study was to perform a meta-analysis of the ruminal transcriptome of two unrelated populations of animals to identify genes that are involved in feed efficiency across populations. RNAseq data from animals with high and low residual feed intake (RFI) from a United States population of cattle (eight high and eight low RFI) and a Canadian population of cattle (nine high and nine low RFI) were analyzed for differences in gene expression. A total of 83 differentially expressed genes were identified. Some of these genes have been previously identified in other feed efficiency studies. These genes included ATP6AP1, BAG6, RHOG, and YPEL3. Differentially expressed genes involved in the Notch signaling pathway and in protein turnover were also identified. This study, combining two unrelated populations of cattle in a meta-analysis, produced several candidate genes for feed efficiency that may be more robust indicators of feed efficiency than those identified from single populations of animals

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Increasing frailty is associated with higher prevalence and reduced recognition of delirium in older hospitalised inpatients: results of a multi-centre study

    Get PDF
    Purpose: Delirium is a neuropsychiatric disorder delineated by an acute change in cognition, attention, and consciousness. It is common, particularly in older adults, but poorly recognised. Frailty is the accumulation of deficits conferring an increased risk of adverse outcomes. We set out to determine how severity of frailty, as measured using the CFS, affected delirium rates, and recognition in hospitalised older people in the United Kingdom. Methods: Adults over 65 years were included in an observational multi-centre audit across UK hospitals, two prospective rounds, and one retrospective note review. Clinical Frailty Scale (CFS), delirium status, and 30-day outcomes were recorded. Results: The overall prevalence of delirium was 16.3% (483). Patients with delirium were more frail than patients without delirium (median CFS 6 vs 4). The risk of delirium was greater with increasing frailty [OR 2.9 (1.8–4.6) in CFS 4 vs 1–3; OR 12.4 (6.2–24.5) in CFS 8 vs 1–3]. Higher CFS was associated with reduced recognition of delirium (OR of 0.7 (0.3–1.9) in CFS 4 compared to 0.2 (0.1–0.7) in CFS 8). These risks were both independent of age and dementia. Conclusion: We have demonstrated an incremental increase in risk of delirium with increasing frailty. This has important clinical implications, suggesting that frailty may provide a more nuanced measure of vulnerability to delirium and poor outcomes. However, the most frail patients are least likely to have their delirium diagnosed and there is a significant lack of research into the underlying pathophysiology of both of these common geriatric syndromes

    A Diverse Tetrapod Fauna at the Base of 'Romer's Gap'.

    No full text
    The lack of fossil tetrapod bearing deposits in the earliest Carboniferous ('Romer's Gap') has provoked some recent discussions regarding the proximal cause, with three explanations being offered: environmental, taphonomic, and collection failure. One of the few, and earliest, windows into this time is the locality of Blue Beach exposed in the Tournaisian deposits at Horton Bluff lying along the Avon River near Hantsport, Nova Scotia, Canada. This locality has long been known but, because the fossils were deposited in high energy settings they are almost always disarticulated, so the fauna has not been described in detail. Recent intensive collection has revealed a diverse assemblage of material, including for the first time associated elements, which permits an evaluation of the faunal constituents at the locality. Although not diagnosable to a fine taxonomic level, sufficient apomorphies are present to identify representatives from numerous clades known from more complete specimens elsewhere. The evidence suggests a diverse fauna was present, including whatcheeriids and embolomeres. A single humerus previously had been attributed to a colosteid, but there is some uncertainty with this identification. Additional elements suggest the presence of taxa otherwise only known from the late Devonian. Depositional biases at the locality favor tetrapod fossils from larger individuals, but indirect evidence from trackways and tantalizing isolated bones evidences the presence of small taxa that remain to be discovered. The fossils from Blue Beach demonstrate that when windows into the fauna of 'Romer's Gap' are found a rich diversity of tetrapods will be shown to be present, contra arguments that suggested this hiatus in the fossil record was due to extrinsic factors such as atmospheric oxygen levels. They also show that the early tetrapod fauna is not easily divisible into Devonian and Carboniferous faunas, suggesting that some tetrapods passed through the end Devonian extinction event unaffected

    On the intrinsic complexity of point finding in real singular hypersurfaces

    No full text
    In previous work we designed an efficient procedure that finds an algebraic sample point for each connected component of a smooth real complete intersection variety. This procedure exploits geometric properties of generic polar varieties and its complexity is intrinsic with respect to the problem. In the present paper we introduce a natural construction that allows to tackle the case of a non–smooth real hypersurface by means of a reduction to a smooth complete intersection

    Syncline at Lighthouse Point.

    No full text
    <p>The resistant beds here include especially productive sandstones known informally as the ‘Theta Layer’ (<b>Theta</b>) and ‘Lighthouse Sandstone’ (<b>LHSS</b>).</p

    Femur Type 1.

    No full text
    <p>YPM PU 23550, right femur in A, posterior, B, dorsal, C, anterior, and D, ventral, E, proximal, and F, distal views. Scale bar equals 10 mm. <b>Abbreviations</b>: <b>ab</b>, adductor blade; <b>ac</b>, adductor crest; <b>ff</b>, fibular facet; <b>icf</b>, intercondylar fossa; <b>tf</b>, tibial facet.</p

    Humerus Types 2 and 3.

    No full text
    <p>YPM PU 20754, left humerus in A, dorsal; and B, ventral views, less areas still obscured by matrix. RM 20.6770 left? humerus in C, dorsal, and D, ventral, views. <b>Abbreviations</b>: <b>dp</b>, deltopectoral crest; <b>ect</b>, ectepicondyle; <b>ef</b>, entepicondylar foramen.</p

    Femur Type 2 and tibia Type 1.

    No full text
    <p>NSM004GF045.034A-C, right and left femora (Type 2) and left tibia (Type 1) found in association. A-D, I, J, left femur in A, posterior, B, ventral, C, anterior, D, dorsal I, proximal, and J, distal views. E-H right femur in E, dorsal, F, anterior, G, ventral, and H, posterior views. Left tibia in K, flexor (ventral), and L, extensor (dorsal) views. <b>Abbreviations</b>: <b>ab</b>, adductor blade; <b>ac</b>, adductor crest; <b>cr</b>, thin anterior crest; <b>ff</b>, fibular facet; <b>fo</b>, fibular fossa; <b>ft</b>, fourth trochanter; <b>icf</b>, intercondylar fossa; <b>it</b>, internal trochanter; <b>itf</b>, intertrochanteric fossa; <b>tf</b>, tibial facet.</p
    • …
    corecore