391 research outputs found
Synthesis and characterisation of nanocrystalline ZrN PVD coatings on AISI 430 stainless steel
The nanocrystalline films of zirconium nitride have been synthesized using ion-plasma vacuum-arc deposition technique in combination with high-frequency discharge (RF) on AISI 430 stainless steel at 150oC. Structure examinations X-ray fluorescent analysis (XRF), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) with microanalysis (EDS), and transmission electron microscopy (TEM), nanoidentation method β were performed to study phase and chemical composition, surface morphology, microstructure and nanohardness of coatings. The developed technology provided low-temperature coatings synthesis, minimized discharge breakdown decreasing formation of macroparticles (MPs) and allowed to deposit ZrN coatings with hardness variation 26.6β¦31.5 GPa. It was revealed that ZrN single-phase coatings of cubic modification with finecrystalline grains of 20 nm in size were formed
Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets
The results of vacuum-arc deposition of thin ZrOβcoatings to protect the surface of Nd-Fe-B permanent magnets used as repelling devices in orthodontics are presented. The structure, phase composition and mechanical properties of zirconium dioxide films have been investigated by means of SEM, XRD, EDX, XRF and nanoindentation method. It was revealed the formation of polycrystalline ZrOβ films of monoclinic modification with average grain size 25 nm. The influence of the ZrOβ coating in terms of its barrier properties for corrosion in quasi-physiological 0.9 NaCl solution has been studied. Electrochemical measurements indicated good barrier properties of the coating on specimens in the physiological solution environment
ΠΠ΅ΡΠΈΠ»ΡΠ²Π°Π½Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ 8 ΠΏΡΡΠΈΠ΄ΠΈΠ½ΠΎΠ²ΠΎΡ ΡΠ°ΡΡΠΈΠ½ΠΈ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΠΈ N-(Π±Π΅Π½Π·ΠΈΠ»)-2-Π³ΡΠ΄ΡΠΎΠΊΡΠΈ-4-ΠΎΠΊΡΠΎ-4Π-ΠΏΡΡΠΈΠ΄ΠΎ[1,2-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-3-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠ°ΠΌΡΠ΄ΡΠ² ΡΠΊ ΡΠΏΡΠΎΠ±Π° ΠΏΠΎΡΠΈΠ»Π΅Π½Π½Ρ ΡΡ Π°Π½Π°Π»Π³Π΅ΡΠΈΡΠ½ΠΈΡ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΠ΅ΠΉ
The chemical modification of the pyridine moiety of the molecule β displacement of the methyl group in position 8 ofΒ pyrido[1,2-a]pyrimidine nucleus has been considered as one of the possible versions to optimize the biological propertiesΒ of N-(benzyl)-2-hydroxy-4-oxo-4H-pyrido[1,2-a]pyrimidine-3-carboxamides. The synthesis of the research targetsΒ was carried out by the reaction of the corresponding benzylamines and ethyl 2-hydroxy-8-methyl-4-oxo-4H-pyrido[1,2-a]Β pyrimidine-3-carboxylate, in its turn obtained by condensation of 2-amino-4-methylpyridine (i.e. the product with theΒ methyl group in the intentionally required position) and triethyl methanetricarboxylate. The structure of the compoundsΒ obtained has been confirmed by the data of elemental analysis and NMR 1H spectroscopy, and in the case of opticallyΒ active 1-phenylethylamides additionally by polarimetry. The study of the analgesic properties of all N-(benzyl)-2-hydroxy-8-methyl-4-oxo-4H-pyrido[1,2-a]pyrimidine-3-carboxamides was performed on the standard experimental βacetic acidΒ writhingβ model. At the same time, it has been found that our modification is accompanied with the increased biologicalΒ activity of exclusively para-substituted derivatives. For profound research 4-fluorobenzylamide exceeding Piroxicam andΒ Nabumetone by the level of the specific effect has been recommended as a potential new analgesic.Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ
Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ² ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ² N-(Π±Π΅Π½Π·ΠΈΠ»)-2-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈ-4-ΠΎΠΊΡΠΎ-4Π-ΠΏΠΈΡΠΈΠ΄ΠΎ[1,2-a]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-3-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠ°ΠΌΠΈΠ΄ΠΎΠ² ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π° Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΠΏΠΈΡΠΈΠ΄ΠΈΠ½ΠΎΠ²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΈΡ
ΠΌΠΎΠ»Π΅ΠΊΡΠ»Ρ β ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΈΠ»ΡΠ½ΠΎΠΉ Π³ΡΡΠΏΠΏΡ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ 8 ΠΏΠΈΡΠΈΠ΄ΠΎ[1,2-a]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎΒ ΡΠ΄ΡΠ°. Π‘ΠΈΠ½ΡΠ΅Π· ΡΠ΅Π»Π΅Π²ΡΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΎΡΡΡΠ΅ΡΡΠ²Π»Π΅Π½ ΡΠ΅Π°ΠΊΡΠΈΠ΅ΠΉ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ
Π±Π΅Π½Π·ΠΈΠ»Π°ΠΌΠΈΠ½ΠΎΠ²Β Ρ ΡΡΠΈΠ»-2-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈ-8-ΠΌΠ΅ΡΠΈΠ»-4-ΠΎΠΊΡΠΎ-4Π-ΠΏΠΈΡΠΈΠ΄ΠΎ[1,2-a]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-3-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠΎΠΌ, Π² ΡΠ²ΠΎΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΌ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΈΠ΅ΠΉ 2-Π°ΠΌΠΈΠ½ΠΎ-4-ΠΌΠ΅ΡΠΈΠ»ΠΏΠΈΡΠΈΠ΄ΠΈΠ½Π° (Ρ. Π΅. ΠΏΡΠΎΠ΄ΡΠΊΡΠ° Ρ ΠΌΠ΅ΡΠΈΠ»ΡΠ½ΠΎΠΉ Π³ΡΡΠΏΠΏΠΎΠΉ Π² Π·Π°Π²Π΅Π΄ΠΎΠΌΠΎ ΡΡΠ΅Π±ΡΠ΅ΠΌΠΎΠΌ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ) Ρ ΡΡΠΈΡΡΠΈΠ»ΠΌΠ΅ΡΠ°Π½ΡΡΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠΎΠΌ. Π‘ΡΡΠΎΠ΅Π½ΠΈΠ΅ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π²Π΅ΡΠ΅ΡΡΠ² ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΎ Π΄Π°Π½Π½ΡΠΌΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ 1Π Π―ΠΠ , Π° Π² ΡΠ»ΡΡΠ°Π΅ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈ Π°ΠΊΡΠΈΠ²Π½ΡΡ
1-ΡΠ΅Π½ΠΈΠ»ΡΡΠΈΠ»Π°ΠΌΠΈΠ΄ΠΎΠ² Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΅ΡΠ΅ ΠΈ ΠΏΠΎΠ»ΡΡΠΈΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈ. ΠΠ·ΡΡΠ΅Π½ΠΈΠ΅ Π°Π½Π°Π»ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ² Π²ΡΠ΅Ρ
N-(Π±Π΅Π½Π·ΠΈΠ»)-2-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈ-8-ΠΌΠ΅ΡΠΈΠ»-4-ΠΎΠΊΡΠΎ-4Π-ΠΏΠΈΡΠΈΠ΄ΠΎ[1,2-a]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-3-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠ°ΠΌΠΈΠ΄ΠΎΠ² ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π½Π° ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉΒ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠΊΡΡΡΠ½ΠΎΠΊΠΈΡΠ»ΡΡ
ΠΊΠΎΡΡΠ΅ΠΉ. ΠΡΠΈ ΡΡΠΎΠΌ Π½Π°ΠΉΠ΄Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠ΅Π΄ΠΏΡΠΈΠ½ΡΡΠ°Ρ Π½Π°ΠΌΠΈ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°Π΅ΡΡΡ ΡΡΠΈΠ»Π΅Π½ΠΈΠ΅ΠΌ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈΡΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΠ°ΡΠ°Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
. ΠΠ»Ρ ΡΠ³Π»ΡΠ±Π»Π΅Π½Π½ΡΡ
ΠΈΡΠΏΡΡΠ°Π½ΠΈΠΉ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΡΠ³Π΅ΡΠΈΠΊΠ° ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Β 4-ΡΡΠΎΡΠ±Π΅Π½Π·ΠΈΠ»Π°ΠΌΠΈΠ΄, ΠΏΡΠ΅Π²ΠΎΡΡ
ΠΎΠ΄ΡΡΠΈΠΉ ΠΏΠΎ ΡΡΠΎΠ²Π½Ρ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΡΠ΅ΠΊΡΠ° ΠΠΈΡΠΎΠΊΡΠΈΠΊΠ°ΠΌ ΠΈ ΠΠ°Π±ΡΠΌΠ΅ΡΠΎΠ½.Π―ΠΊ ΠΎΠ΄ΠΈΠ½ Π· ΠΌΠΎΠΆΠ»ΠΈΠ²ΠΈΡ
Π²Π°ΡΡΠ°Π½ΡΡΠ² ΠΎΠΏΡΠΈΠΌΡΠ·Π°ΡΡΡ Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΡ
Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΠ΅ΠΉ N-(Π±Π΅Π½Π·ΠΈΠ»)-2-Π³ΡΠ΄ΡΠΎΠΊΡΠΈ-4-ΠΎΠΊΡΠΎ-4Π-ΠΏΡΡΠΈΠ΄ΠΎ[1,2-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-3-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠ°ΠΌΡΠ΄ΡΠ² ΡΠΎΠ·Π³Π»ΡΠ½ΡΡΠΎ Ρ
ΡΠΌΡΡΠ½Ρ ΠΌΠΎΠ΄ΠΈΡΡΠΊΠ°ΡΡΡ ΠΏΡΡΠΈΠ΄ΠΈΠ½ΠΎΠ²ΠΎΡ ΡΠ°ΡΡΠΈΠ½ΠΈ ΡΡ
ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΠΈ β ΠΏΠ΅ΡΠ΅ΠΌΡΡΠ΅Π½Π½Ρ ΠΌΠ΅ΡΠΈΠ»ΡΠ½ΠΎΡ Π³ΡΡΠΏΠΈ Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ 8 ΠΏΡΡΠΈΠ΄ΠΎ[1,2-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ΄ΡΠ°. Π‘ΠΈΠ½ΡΠ΅Π· ΡΡΠ»ΡΠΎΠ²ΠΈΡ
Β ΠΎΠ±βΡΠΊΡΡΠ² Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π·Π΄ΡΠΉΡΠ½Π΅Π½ΠΎ ΡΠ΅Π°ΠΊΡΡΡΡ Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π½ΠΈΡ
Π±Π΅Π½Π·ΠΈΠ»Π°ΠΌΡΠ½ΡΠ² Π· Π΅ΡΠΈΠ»-2-Π³ΡΠ΄ΡΠΎΠΊΡΠΈ-8-ΠΌΠ΅ΡΠΈΠ»-4-ΠΎΠΊΡΠΎ-4Π-ΠΏΡΡΠΈΠ΄ΠΎ[1,2-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-3-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠΎΠΌ, Ρ ΡΠ²ΠΎΡ ΡΠ΅ΡΠ³Ρ, ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠΌ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΡΡΡ 2-Π°ΠΌΡΠ½ΠΎ-4-ΠΌΠ΅ΡΠΈΠ»ΠΏΡΡΠΈΠ΄ΠΈΠ½ΡΒ (ΡΠΎΠ±ΡΠΎ ΠΏΡΠΎΠ΄ΡΠΊΡΡ Π· ΠΌΠ΅ΡΠΈΠ»ΡΠ½ΠΎΡ Π³ΡΡΠΏΠΎΡ Π² Π·Π°Π²ΡΠ΄ΠΎΠΌΠΎ Π½Π΅ΠΎΠ±Ρ
ΡΠ΄Π½ΠΎΠΌΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ) Π· ΡΡΠΈΠ΅ΡΠΈΠ»ΠΌΠ΅ΡΠ°Π½ΡΡΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠΎΠΌ. ΠΡΠ΄ΠΎΠ²Ρ ΡΠΈΠ½ΡΠ΅Π·ΠΎΠ²Π°Π½ΠΈΡ
ΡΠ΅ΡΠΎΠ²ΠΈΠ½ ΠΏΡΠ΄ΡΠ²Π΅ΡΠ΄ΠΆΠ΅Π½ΠΎ Π΄Π°Π½ΠΈΠΌΠΈ Π΅Π»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΡΠ·Ρ ΡΠ° ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΡΡ 1Π Π―ΠΠ ,Β Π° Ρ Π²ΠΈΠΏΠ°Π΄ΠΊΡ ΠΎΠΏΡΠΈΡΠ½ΠΎ Π°ΠΊΡΠΈΠ²Π½ΠΈΡ
1-ΡΠ΅Π½ΡΠ»Π΅ΡΠΈΠ»Π°ΠΌΡΠ΄ΡΠ² Π΄ΠΎΠ΄Π°ΡΠΊΠΎΠ²ΠΎ ΡΠ΅ ΠΉ ΠΏΠΎΠ»ΡΡΠΈΠΌΠ΅ΡΡΠΈΡΠ½ΠΎ. ΠΠΈΠ²ΡΠ΅Π½Π½Ρ Π°Π½Π°Π»Π³Π΅ΡΠΈΡΠ½ΠΈΡ
Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΠ΅ΠΉ ΡΡΡΡ
N-(Π±Π΅Π½Π·ΠΈΠ»)-2-Π³ΡΠ΄ΡΠΎΠΊΡΠΈ-8-ΠΌΠ΅ΡΠΈΠ»-4-ΠΎΠΊΡΠΎ-4Π-ΠΏΡΡΠΈΠ΄ΠΎ[1,2-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-3-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠ°ΠΌΡΠ΄ΡΠ² ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π½Π° ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠΉ Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΎΡΡΠΎΠ²ΠΎΠΊΠΈΡΠ»ΠΈΡ
ΠΊΠΎΡΡΡΠ². ΠΡΠΈ ΡΡΠΎΠΌΡ Π·Π½Π°ΠΉΠ΄Π΅Π½ΠΎ,Β ΡΠΎ Π·Π΄ΡΠΉΡΠ½Π΅Π½Π° Π½Π°ΠΌΠΈ ΠΌΠΎΠ΄ΠΈΡΡΠΊΠ°ΡΡΡ ΡΡΠΏΡΠΎΠ²ΠΎΠ΄ΠΆΡΡΡΡΡΡ ΠΏΠΎΡΠΈΠ»Π΅Π½Π½ΡΠΌ Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π²ΠΈΠΊΠ»ΡΡΠ½ΠΎ ΠΏΠ°ΡΠ°Π·Π°ΠΌΡΡΠ΅Π½ΠΈΡ
ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
. ΠΠ»Ρ ΠΏΠΎΠ³Π»ΠΈΠ±Π»Π΅Π½ΠΈΡ
Π²ΠΈΠΏΡΠΎΠ±ΠΎΠ²ΡΠ²Π°Π½Ρ ΡΠΊ Π½ΠΎΠ²ΠΈΠΉ ΠΏΠΎΡΠ΅Π½ΡΡΠΉΠ½ΠΈΠΉ Π°Π½Π°Π»Π³Π΅ΡΠΈΠΊ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½
RF-Magnetron sputtering of silicon carbide and silicon nitride films for solar cells
RF-magnetron nonreactive sputtering method from solid-phase target in argon atmosphere was used for obtaining thin silicon carbide and silicon nitride films, that are used for constructing solar cells based on substrates of single crystal silicon of p-typ
Temperature influence on the properties of thin SiβNβ films
Applying Raman spectroscopy, small-angle x-ray scattering, and atomic force microscopy it were studied phase composition and surface morphology of nanoscale films SiβNβ (obtained by RF magnetron sputtering
Structural, optical and electrical conductivity properties of stannite CuβZnSnSβ
A precursor powder was obtained from drying the solutions of a mixture of different ratios of Cu, Zn and Sn chloride and thiourea. The Cu2ZnSnS4 (CZTS) samples were prepared from thermal decomposition of the corresponding precursors in vacuum, and were then characterized using scanning emission microscopy, energy dispersive x-ray analysis, x-ray powder diffraction and Raman scatterin
Magnetic Anisotropy of Single-Ion Magnet (PPh4)2 [ReF6]Β·2H2O
Studying of single-molecule magnets has sprung many surprises such as, e.g., quantum tunneling of the magnetization, which is strongly related to the presence of a magnetic anisotropy. Electron spin resonance and inelastic neutron scattering measurements of (PPh4)2[ReF6]β
2H2O complex evidence an unprecedented large single-site magnetic anisotropy of D βΌ 35 K in this material. Using state-of-the-art ab initio calculations we found that the single-ion anisotropy is indeed very large (but does not exceed 12 K) and revealed the physical mechanism lying behind this phenomenon. Β© 2023, The Author(s).Ural Branch, Russian Academy of Sciences, UB RASWe are grateful to Prof. A. Rogalev for drawing our attention to this Re SIM and E. Komleva for a detailed discussion of the paper. Computations were performed on the Uran supercomputer at the Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Anomalous cyclotron mass dependence on the magnetic field and Berryβs phase in (Cdβ-x-Ξ³ZnxMnΞ³)βAsβ solid solutions
Shubnikov-de Haas (SdH) effect and magnetoresistance measurements of single crystals of diluted II-V magnetic semiconductors (Cdβ-x-Ξ³ZnxMnΞ³)βAsβ (x+Ξ³= 0.4, y=0.04 and 0.08) are investigated in the temperature range T=4.2 Γ· 300 K and in transverse magnetic field B=0 Γ· 25
Π ΠΎΠ·ΡΠΎΠ±Π»Π΅Π½Π½Ρ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΡΠΉ Π±ΡΡΠ΅ΡΠ½ΠΈΡ Π³ΡΠΌΠΎΠ²ΠΈΡ ΡΡΡΠ΅ΡΠΎΠ²ΠΎΠΊ Π±Π°ΡΠ°Π±Π°Π½Π½ΠΈΡ Ρ ΡΡΡΠ±Π½ΠΈΡ ΠΌΠ»ΠΈΠ½ΡΠ² ΡΠ° ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈ Π²ΠΈΠΏΡΠΎΠ±ΡΠ²Π°Π½Π½Ρ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ
Π ΠΎΠ·ΠΊΡΠΈΡΡ ΠΏΠ΅ΡΠ΅Π²Π°Π³ΠΈ ΠΉ Π½Π΅Π΄ΠΎΠ»ΡΠΊΠΈ Π±ΡΡΠ΅ΡΠ½ΠΈΡ
Π³ΡΠΌΠΎΠ²ΠΈΡ
ΡΡΡΠ΅ΡΠΎΠ²ΠΎΠΊ, Π½Π°Π²Π΅Π΄Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈ Π²ΠΈΠΏΡΠΎΠ±ΡΠ²Π°Π½Π½Ρ ΡΡΡΠ΅ΡΡΠ²Π°Π»ΡΠ½ΠΈΡ
ΠΏΠ»ΠΈΡ ΡΡΠ°Π΄ΠΈΡΡΠΉΠ½ΠΎΡ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΡΡ ΡΠ° ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΡΡΡΠ΅ΡΡΠ²ΠΊΠΈ Π±ΡΡΠ΅ΡΠ½ΠΎΡ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΡ
- β¦