129 research outputs found

    Hybridization of seedless grapes

    Get PDF
    Complete seedlessness was not achieved in any seedless x seedless families produced. This clearly shows the seedless trait is not controlled by a single recessive gene.The percentage of seedlessness obtained was not the same for all families. This indicates the importance of parental combinations and the need for progeny testing to increase the efficiency of producing seedless offspring.All seedless genotypes used except Thompson Seedless have a seeded female parent, indicating heterogenity for seeds/aborted seeds. It will be interesting now to use seedlings from the seedless x seedless families to see if 100 % seedless offspring can be obtained.Three seedless x seedless families compared to their complementary families from seeded x seedless were significantly different for percent seedless. In ovulo embryo rescue of seedless x seedless hybrids is also advantageous as it allows direct hybridization without seeded genotypes. This eliminates the introduction of genes from seeded genotypes and one generation - a savings of 5 years. The ability to achieve complimentary crosses between seedless genotypes directly can be achieved

    In-ovulo embryo culture and seedling development of seeded and seedless grapes (Vitis vinifera L.)

    Get PDF
    Normal embryos and seedling plants were obtained from normally abortive ovules of seedless grapes. Ovules of seeded and seedless cultivars were excised and cultured on 10 media at 12 dates between anthesis and 101 d postanthesis. Ovules cultured from anthesis until 14 d postanthesis-grew abnormally. At 24 and 31 d after anthesis, ovules developed into normal-appearing seeds, but they contained no noticeable embryo or endosperm. Viable embryos were found in excised ovules cultured beyond 38 d after anthesis. Ovules of 1 seedless grape cultured 52 d postanthesis germinated and produced healthy seedlings. Self pollinated ovules from 7 to 13 seedless clones produced viable embryos when cultured. Open pollinated ovules and crosses between seedless clones also produced viable embryos and seedling plants. This indicates that stenospermocarpic seedless grapes can produce viable embryos. lmplications for breeding of seedless grapes are discussed.Die Kultur von Samenanlagen zur Erzeugung von Embryonen und die Entwicklung von Sämlingen bei kernhaltigen und kernlosen Reben (Vitis vinifera L.)Aus normalerweise abortierenden Samenanlagen kernloser Rebsorten konnten normale Embryonen und Keimpflanzen gewonnen werden. Die Samenanlagen kernhaltiger und kernloser Sorten wurden isoliert und auf 10 verschiedenen Medien kultiviert, wobei der Entnahmezeitpunkt vom Tag der Anthese bis auf 101 d nach dem Aufblühen - insgesamt 12 verschiedene Termine - ausgedehnt wurde. Samenanlagen, die bis zu 14 d nach der Anthese isoliert worden waren, zeigten ein normales Wachstum. 24 und 31 d nach der Anthese isoliert, entwickelten sich die Samenanlagen zu äußerlich normalen Samen, die aber nur degenerierte Embryonen und Endospermreste enthielten. Lebensfähige Embryonen wurden gefunden, wenn die Embryonen frühestens 38 d nach der Anthese in Kultur genommen worden waren. Die Samenanlagen einer kernlosen Sorte, die 52 d nach dem Aufblühen isoliert worden waren, keimten und erzeugten gesunde Sämlinge. Bei Selbstbestäubung bildeten 7 von 13 kernlosen Klonen in den kultivierten Samenanlagen vitale Embryonen. Aus den kultivierten Samenanlagen frei abgeblühter oder untereinander gekreuzter kernloser Klone entstanden ebenfalls lebensfähige Embryonen und Sämlinge. Die Ergebnisse weisen darauf hin, daß viele stenospermokarp kernlose Reben lebensfähige Embryonen hervorbringen können, wenn sich die Samenanlagen nur in einem angemessenen Milieu entwickeln können. Die Konsequenzen für die Züchtung kernloser Rebsorten werden diskutiert

    The zygotic origin of hybrids from Thompson Seedless grape, Vitis vinifera L.

    Get PDF
    Seedlings from open pollination and controlled crosses of Thompson Seedless were different from the parent in either fruit color, seed size, flavor or isozyme pattern. These results confirm that plants produced by in ovulo embryo culture of Thompson Seedless are usually zygotic in origin. This is a useful tool for producing hybrid plants from stenospermic seedless genotypes, allowing the hybridization of seedless by seedless and permitting many crosses previously unattainable.Die zygotische Herkunft von Hybriden der Rebsorte Thompson Seedless (Vitis vinifera L.)Um die zygotische Herkunft von Nachkommen der stenospermokarpen Sorte Thompson Seedless abzusichern, wurden aus in vitro kultivierten Samenanlagen Pflanzen herangezogen und eine Reihe von Merkmalen analysiert. Die Sämlinge aus unkontrollierter Bestäubung oder aus gezielter Kreuzung von Thompson Seedless unterschieden sich von der Muttersorte entweder in Beerenfarbe, Samengröße, Aroma oder Isoenzymmuster. Diese Befunde bestätigen, daß die durch in vitro-Kultur der Samenanlagen von Thompson Seedless erzeugten Pflanzen in der Regel zygotischen Ursprungs sind. Die Embryokultur aus Samenanlagen ist eine wertvolle Technik zur Erzeugung von Hybriden aus stenospermokarpen Genotypen; sie erlaubt die Kreuzung mit anderen kernlosen Sorten und ermöglicht viele bisher nicht realisierbare Kreuzungskombinationen

    Myotis rufoniger genome sequence and analyses: M-rufoniger's genomic feature and the decreasing effective population size of Myotis bats

    Get PDF
    Myotis rufoniger is a vesper bat in the genus Myotis. Here we report the whole genome sequence and analyses of the M. rufoniger. We generated 124 Gb of short-read DNA sequences with an estimated genome size of 1.88 Gb at a sequencing depth of 66x fold. The sequences were aligned to M. brandtii bat reference genome at a mapping rate of 96.50% covering 95.71% coding sequence region at 10x coverage. The divergence time of Myotis bat family is estimated to be 11.5 million years, and the divergence time between M. rufoniger and its closest species M. davidii is estimated to be 10.4 million years. We found 1,239 function-altering M. rufoniger specific amino acid sequences from 929 genes compared to other Myotis bat and mammalian genomes. The functional enrichment test of the 929 genes detected amino acid changes in melanin associated DCT, SLC45A2, TYRP1, and OCA2 genes possibly responsible for the M. rufoniger's red fur color and a general coloration in Myotis. N6AMT1 gene, associated with arsenic resistance, showed a high degree of function alteration in M. rufoniger. We further confirmed that the M. rufoniger also has batspecific sequences within FSHB, GHR, IGF1R, TP53, MDM2, SLC45A2, RGS7BP, RHO, OPN1SW, and CNGB3 genes that have already been published to be related to bat's reproduction, lifespan, flight, low vision, and echolocation. Additionally, our demographic history analysis found that the effective population size of Myotis clade has been consistently decreasing since similar to 30k years ago. M. rufoniger's effective population size was the lowest in Myotis bats, confirming its relatively low genetic diversity

    Increased cortical surface area and gyrification following long-term survival from early monocular enucleation

    Get PDF
    AbstractPurposeRetinoblastoma is typically diagnosed before 5 years of age and is often treated by enucleation (surgical removal) of the cancerous eye. Here, we sought to characterize morphological changes of the cortex following long-term survival from early monocular enucleation.MethodsNine adults with early right-eye enucleation (≤48 months of age) due to retinoblastoma were compared to 18 binocularly intact controls. Surface area, cortical thickness, and gyrification estimates were obtained from T1 weighted images and group differences were examined.ResultsEarly monocular enucleation was associated with increased surface area and/or gyrification in visual (i.e., V1, inferior temporal), auditory (i.e., supramarginal), and multisensory (i.e., superior temporal, inferior parietal, superior parietal) cortices compared with controls. Visual cortex increases were restricted to the right hemisphere contralateral to the remaining eye, consistent with previous subcortical data showing asymmetrical lateral geniculate nucleus volume following early monocular enucleation.ConclusionsAltered morphological development of visual, auditory, and multisensory regions occurs subsequent to long-time survival from early eye loss

    Caenorhabditis elegans Cyclin B3 Is Required for Multiple Mitotic Processes Including Alleviation of a Spindle Checkpoint–Dependent Block in Anaphase Chromosome Segregation

    Get PDF
    The master regulators of the cell cycle are cyclin-dependent kinases (Cdks), which influence the function of a myriad of proteins via phosphorylation. Mitotic Cdk1 is activated by A-type, as well as B1- and B2-type, cyclins. However, the role of a third, conserved cyclin B family member, cyclin B3, is less well defined. Here, we show that Caenorhabditis elegans CYB-3 has essential and distinct functions from cyclin B1 and B2 in the early embryo. CYB-3 is required for the timely execution of a number of cell cycle events including completion of the MII meiotic division of the oocyte nucleus, pronuclear migration, centrosome maturation, mitotic chromosome condensation and congression, and, most strikingly, progression through the metaphase-to-anaphase transition. Our experiments reveal that the extended metaphase delay in CYB-3–depleted embryos is dependent on an intact spindle assembly checkpoint (SAC) and results in salient defects in the architecture of holocentric metaphase chromosomes. Furthermore, genetically increasing or decreasing dynein activity results in the respective suppression or enhancement of CYB-3–dependent defects in cell cycle progression. Altogether, these data reveal that CYB-3 plays a unique, essential role in the cell cycle including promoting mitotic dynein functionality and alleviation of a SAC–dependent block in anaphase chromosome segregation

    A Genome-Wide Survey of Switchgrass Genome Structure and Organization

    Get PDF
    The perennial grass, switchgrass (Panicum virgatum L.), is a promising bioenergy crop and the target of whole genome sequencing. We constructed two bacterial artificial chromosome (BAC) libraries from the AP13 clone of switchgrass to gain insight into the genome structure and organization, initiate functional and comparative genomic studies, and assist with genome assembly. Together representing 16 haploid genome equivalents of switchgrass, each library comprises 101,376 clones with average insert sizes of 144 (HindIII-generated) and 110 kb (BstYI-generated). A total of 330,297 high quality BAC-end sequences (BES) were generated, accounting for 263.2 Mbp (16.4%) of the switchgrass genome. Analysis of the BES identified 279,099 known repetitive elements, >50,000 SSRs, and 2,528 novel repeat elements, named switchgrass repetitive elements (SREs). Comparative mapping of 47 full-length BAC sequences and 330K BES revealed high levels of synteny with the grass genomes sorghum, rice, maize, and Brachypodium. Our data indicate that the sorghum genome has retained larger microsyntenous regions with switchgrass besides high gene order conservation with rice. The resources generated in this effort will be useful for a broad range of applications

    Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.)

    Get PDF
    Physical map of chickpea was developed for the reference chickpea genotype (ICC 4958) using bacterial artificial chromosome (BAC) libraries targeting 71,094 clones (~12× coverage). High information content fingerprinting (HICF) of these clones gave high-quality fingerprinting data for 67,483 clones, and 1,174 contigs comprising 46,112 clones and 3,256 singletons were defined. In brief, 574 Mb genome size was assembled in 1,174 contigs with an average of 0.49 Mb per contig and 3,256 singletons represent 407 Mb genome. The physical map was linked with two genetic maps with the help of 245 BAC-end sequence (BES)-derived simple sequence repeat (SSR) markers. This allowed locating some of the BACs in the vicinity of some important quantitative trait loci (QTLs) for drought tolerance and reistance to Fusarium wilt and Ascochyta blight. In addition, fingerprinted contig (FPC) assembly was also integrated with the draft genome sequence of chickpea. As a result, ~965 BACs including 163 minimum tilling path (MTP) clones could be mapped on eight pseudo-molecules of chickpea forming 491 hypothetical contigs representing 54,013,992 bp (~54 Mb) of the draft genome. Comprehensive analysis of markers in abiotic and biotic stress tolerance QTL regions led to identification of 654, 306 and 23 genes in drought tolerance “QTL-hotspot” region, Ascochyta blight resistance QTL region and Fusarium wilt resistance QTL region, respectively. Integrated physical, genetic and genome map should provide a foundation for cloning and isolation of QTLs/genes for molecular dissection of traits as well as markers for molecular breeding for chickpea improvement

    Disease-Causing 7.4 kb Cis-Regulatory Deletion Disrupting Conserved Non-Coding Sequences and Their Interaction with the FOXL2 Promotor: Implications for Mutation Screening

    Get PDF
    To date, the contribution of disrupted potentially cis-regulatory conserved non-coding sequences (CNCs) to human disease is most likely underestimated, as no systematic screens for putative deleterious variations in CNCs have been conducted. As a model for monogenic disease we studied the involvement of genetic changes of CNCs in the cis-regulatory domain of FOXL2 in blepharophimosis syndrome (BPES). Fifty-seven molecularly unsolved BPES patients underwent high-resolution copy number screening and targeted sequencing of CNCs. Apart from three larger distant deletions, a de novo deletion as small as 7.4 kb was found at 283 kb 5′ to FOXL2. The deletion appeared to be triggered by an H-DNA-induced double-stranded break (DSB). In addition, it disrupts a novel long non-coding RNA (ncRNA) PISRT1 and 8 CNCs. The regulatory potential of the deleted CNCs was substantiated by in vitro luciferase assays. Interestingly, Chromosome Conformation Capture (3C) of a 625 kb region surrounding FOXL2 in expressing cellular systems revealed physical interactions of three upstream fragments and the FOXL2 core promoter. Importantly, one of these contains the 7.4 kb deleted fragment. Overall, this study revealed the smallest distant deletion causing monogenic disease and impacts upon the concept of mutation screening in human disease and developmental disorders in particular
    corecore