410 research outputs found

    Weathering rates in the HietajÀrvi Integrated Monitoring catchment

    Get PDF

    Neuromagnetic correlates of visual motion coherence

    Get PDF
    In order to characterize cortical responses to coherent motion we use magnetoencephalography (MEG) to measure human brain activity that is modulated by the degree of global coherence in a visual motion stimulus. Five subjects passively viewed two-phase motion sequences of sparse random dot fields. In the first (incoherent) phase the dots moved in random directions; in the second (coherent) phase a variable percentage of dots moved uniformly in one direction while the others moved randomly. We show that: (i) visual-motion-evoked magnetic fields, measured with a whole-scalp neuromagnetometer, reveal two transient events, within which we identify two significant peaks--the 'ON-M220' peak approximately 220 ms after the onset of incoherent motion and the 'TR-M230' peak, approximately 230 ms after the transition from incoherent to coherent motion; (ii) in lateral occipital channels, the TR-M230 peak amplitude varies with the percentage of motion coherence; (iii) two main sources are active in response to the transition from incoherent to coherent motion, the human medial temporal area complex/V3 accessory area (hMT+/V3A) and the superior temporal sulcus (STS), and (iv) these distinct areas show a similar, significant dependence of response strength and latency on motion coherence

    Seasonal and Diurnal Variation of Geomagnetic Activity: Revised \u3cem\u3eDst\u3c/em\u3e Versus External Drivers

    Get PDF
    Daily and seasonal variability of long time series of magnetometer data from Dst stations is examined. Each station separately shows a local minimum of horizontal magnetic component near 18 local time (LT) and weakest activity near 06 LT. The stations were found to have different baselines such that the average levels of activity differed by about 10 nT. This effect was corrected for by introducing a new “base method” for the elimination of the secular variation. This changed the seasonal variability of the Dst index by about 3 nT. The hemispheric differences between the annual variation (larger activity during local winter and autumn solstice) were demonstrated and eliminated from the Dst index by addition of two Southern Hemisphere stations to a new index termed Dst6. Three external drivers of geomagnetic activity were considered: the heliographic latitude, the equinoctial effect, and the Russell–McPherron effect. Using the newly created Dst6 index, it is demonstrated that these three effects account for only about 50% of the daily and seasonal variability of the index. It is not clear what drives the other 50% of the daily and seasonal variability, but it is suggested that the station distribution may play a role

    Quality assurance of the Brewer UV measurements in Finland

    No full text
    International audienceThe quality assurance of the two Brewer spectrophotometers of the Finnish Meteorological Institute is discussed in this paper. The complete data processing chain from raw signal to high quality spectra is presented. The quality assurance includes daily maintenance, laboratory characterizations, calculation of long term spectral responsivity, data processing and quality assessment. The cosine correction of the measurements is based on a new method, and included in the data processing software. The results showed that the actual cosine correction factor of the Finnish Brewers can vary between 1.08?1.13 and 1.08?1.12, respectively, depending on the sky radiance distribution and wavelength. The temperature characterization showed a linear temperature dependence between the internal temperature and the photon counts per cycle, and a temperature correction was used for correcting the measurements. The long term spectral responsivity was calculated using time series of several lamps using two slightly different methods. The long term spectral responsivity was scaled to the irradiance scale of the Helsinki University of Technology (HUT) for the whole measurement time periods 1990?2006 and 1995?2006 for SodankylÀ and Jokioinen, respectively. Both Brewers have participated in many international spectroradiometer comparisons, and have shown good stability. The differences between the Brewers and the portable reference spectroradiometer QASUME have been within 5% during 2002?2007

    Quality assurance of the Brewer spectral UV measurements in Finland

    Get PDF
    The quality assurance of the two Brewer spectrophotometers of the Finnish Meteorological Institute is discussed in this paper. The complete data processing chain from raw signal to high quality spectra is presented. The quality assurance includes daily maintenance, laboratory characterizations, calculation of long-term spectral responsivity, data processing and quality assessment. The cosine correction of the measurements is based on a new method, and is included in the data processing software. The results showed that the actual cosine correction factor of the two Finnish Brewers can vary between 1.08–1.13 and 1.08–1.12, respectively, depending on the sky radiance distribution and wavelength. The temperature characterization showed a linear temperature dependence between the instruments' internal temperature and the photon counts per cycle, and a temperature correction was used for correcting the measurements. The long-term spectral responsivity was calculated using the time series of several lamps using two slightly different methods. The long-term spectral responsivity was scaled to the irradiance scale of the Helsinki University of Technology (HUT) for the whole of the measurement time-periods 1990–2006 and 1995–2006 for SodankylĂ€ and Jokioinen, respectively. Both Brewers have participated in many international spectroradiometer comparisons, and have shown good stability. The differences between the Brewers and the portable reference spectroradiometer QASUME have been within 5% during 2002–2007

    Differences in the solar cycle variability of simple and complex active regions during 1996-2018

    Get PDF
    Aims. Our aim is to examine the solar cycle variability of magnetically simple and complex active region. Methods. We studied simple (alpha and beta) and complex (beta gamma and beta gamma delta) active regions based on the Mount Wilson magnetic classification by applying our newly developed daily approach. We analyzed the daily number of the simple active regions (SARs) and compared that to the abundance of the complex active regions (CARs) over the entire solar cycle 23 and cycle 24 until December 2018. Results. We show that CARs evolve differently over the solar cycle from SARs. The time evolution of SARs and CARs on different hemispheres also shows differences, even though on average their latitudinal distributions are shown to be similar. The time evolution of SARs closely follows that of the sunspot number, and their maximum abundance was observed to occur during the early maximum phase, while that of the CARs was seen roughly two years later. We furthermore found that the peak of CARs was reached before the latitudinal width of the activity band starts to decease. Conclusion. Our results suggest that the active region formation process is a competition between the large-scale dynamo (LSD) and the small-scale dynamo (SSD) near the surface, the former varying cyclically and the latter being independent of the solar cycle. During solar maximum, LSD is dominant, giving a preference to SARs, while during the declining phase the relative role of SSD increases. Therefore, a preference for CARs is seen due to the influence of the SSD on the emerging flux.Peer reviewe

    Familial cancer risk in family members and spouses of patients with early-onset head and neck cancer

    Get PDF
    Background Reported patterns of familial aggregation of head and neck cancer (HNC) vary greatly, with many studies hampered by the limited number of subjects. Methods Altogether 923 early-onset ( Results Of all early-onset HNC families, only 21 (2.3%) had familial HNC cancers at any age and less than five familial early onset HNC cancers among first-degree relatives. The cumulative risk of HNC for siblings by age 60 (0.52%) was at population level (0.33%). No increased familial risk of early-onset HNC could be discerned in family members (SIR 2.68, 95% CI 0.32-9.68 for first-degree relatives). Conclusions Our study indicates that the cumulative and relative familial risk of early-onset HNC is modest in the Finnish population and, at most, only a minor proportion of early-onset HNCs are due solely to inherited genetic mutations.Peer reviewe

    Parametric study of EEG sensitivity to phase noise during face processing

    Get PDF
    <b>Background: </b> The present paper examines the visual processing speed of complex objects, here faces, by mapping the relationship between object physical properties and single-trial brain responses. Measuring visual processing speed is challenging because uncontrolled physical differences that co-vary with object categories might affect brain measurements, thus biasing our speed estimates. Recently, we demonstrated that early event-related potential (ERP) differences between faces and objects are preserved even when images differ only in phase information, and amplitude spectra are equated across image categories. Here, we use a parametric design to study how early ERP to faces are shaped by phase information. Subjects performed a two-alternative force choice discrimination between two faces (Experiment 1) or textures (two control experiments). All stimuli had the same amplitude spectrum and were presented at 11 phase noise levels, varying from 0% to 100% in 10% increments, using a linear phase interpolation technique. Single-trial ERP data from each subject were analysed using a multiple linear regression model. <b>Results: </b> Our results show that sensitivity to phase noise in faces emerges progressively in a short time window between the P1 and the N170 ERP visual components. The sensitivity to phase noise starts at about 120–130 ms after stimulus onset and continues for another 25–40 ms. This result was robust both within and across subjects. A control experiment using pink noise textures, which had the same second-order statistics as the faces used in Experiment 1, demonstrated that the sensitivity to phase noise observed for faces cannot be explained by the presence of global image structure alone. A second control experiment used wavelet textures that were matched to the face stimuli in terms of second- and higher-order image statistics. Results from this experiment suggest that higher-order statistics of faces are necessary but not sufficient to obtain the sensitivity to phase noise function observed in response to faces. <b>Conclusion: </b> Our results constitute the first quantitative assessment of the time course of phase information processing by the human visual brain. We interpret our results in a framework that focuses on image statistics and single-trial analyses
    • 

    corecore