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Abstract

In order to characterize cortical responses to coherent motion we use magnetoencephalography (MEG) to measure human brain
activity that is modulated by the degree of global coherence in a visual motion stimulus. Five subjects passively viewed two-phase
motion sequences of sparse random dot fields. In the first (incoherent) phase the dots moved in random directions; in the second
(coherent) phase a variable percentage of dots moved uniformly in one direction while the others moved randomly. We show that: (i)
visual-motion-evoked magnetic fields, measured with a whole-scalp neuromagnetometer, reveal two transient events, within which
we identify two significant peaks – the ‘ON-M220’ peak approximately 220 ms after the onset of incoherent motion and the ‘TR-M230’
peak, approximately 230 ms after the transition from incoherent to coherent motion; (ii) in lateral occipital channels, the TR-M230
peak amplitude varies with the percentage of motion coherence; (iii) two main sources are active in response to the transition from
incoherent to coherent motion, the human medial temporal area complex ⁄V3 accessory area (hMT+ ⁄V3A) and the superior temporal
sulcus (STS), and (iv) these distinct areas show a similar, significant dependence of response strength and latency on motion
coherence.

Introduction

Visual motion provides important cues for image segmentation, via
both motion discontinuities and motion grouping within regions
(Braddick, 1993; Møller & Hurlbert, 1997). A critical area for motion
perception per se is the human MT complex (hMT+), given its likely
homology with monkey medial temporal area (MT) (Zeki, 1980;
Sereno, 1998), evidence from natural lesion studies (Vaina, 1994; Zihl
et al., 1983) and functional imaging experiments (e.g. Tootell et al.,
1995; Anderson et al., 1996; Patzwahl et al., 1996; Uusitalo et al.,
1996; Vanni et al., 1997). But the extent to which MT contributes to
the distinct processes involved in motion segmentation is not clear, nor
is its relationship with other areas that signal surface formation based
on other visual attributes.

There is evidence that MT neurons integrate discrete motion signals
over space (Andersen, 1997; Qian & Andersen, 1994; Movshon &
Newsome, 1996). For random dot kinematograms (RDKs), the firing
rate of individual MT neurons increases with the percentage of
coherent motion in the preferred direction in the classical receptive
field, and predicts the monkey’s performance on a direction discrim-
ination task (Britten et al., 1992). Yet there are at least two distinct
subtypes of MT neurons (Born & Tootell, 1992): ‘local-motion’
neurons, whose responses decrease when the preferred motion
stimulus extends into the inhibitory surround (Allman et al., 1985;
Tanaka et al., 1986); and ‘global-motion’ neurons, whose responses
increase as the preferred motion stimulus expands beyond the

receptive field (Born & Tootell, 1992; Reppas et al., 1997). Local-
motion neurons appear to outnumber global-motion neurons (Allman
et al., 1985; Tanaka et al., 1986). For this reason, it remains unclear
whether central stimuli larger than the 1–4 degree MT receptive field
size near the fovea (Raiguel et al., 1995) would evoke a ‘motion-
surface’ population response that increases with overall increasing
coherence.
Several recent functional magnetic resonance imaging (fMRI)

studies conclude that human MT – unlike V1 – is selectively activated
by coherent motion in comparison with incoherent motion or dynamic
noise (Heeger et al., 1999; Braddick et al., 2001), but there are
conflicting reports (e.g. McKeefry et al., 1997; Lam et al., 2000).
Furthermore, few studies have investigated whether the amplitude of
neural responses in MT or other areas depends systematically on the
strength of motion coherence (but see Patzwahl & Zanker, 2000; Rees
et al., 2000; Nakamura et al., 2003). Apparent discrepancies between
these various studies suggest that MT activation may depend on
particular stimulus parameters, such as the number and density of
discrete motion elements and the overall size of the stimulus (see, e.g.
Tadin et al., 2003), which influence the activation of distinct neuronal
subtypes in MT. Studies of the effect of motion coherence on neuronal
response latency have also failed to agree (compare Patzwahl &
Zanker, 2000 and Nakamura et al., 2003).
The aim of this study is to characterize cortical responses to

coherent visual motion. We use magnetoencephalography (MEG), a
technique that directly measures neuronal activity, in order to clarify
the role of human MT and other brain areas in signalling coherent
motion, and to relate our findings to known neuronal properties. We
use high-contrast stimuli large and dense enough to activate ‘global-
motion’ MT neurons as well as ‘local-motion’ neurons. We also
exploit the fact that MEG has a superior temporal resolution to fMRI
and positron emission tomography (PET; milliseconds vs. seconds-to-
minutes) and is therefore the optimal technique to clarify the effect of
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motion coherence on the timing of neuronal responses. MEG also has
superior spatial resolution to electroencephalography (reviewed in
Hämäläinen et al., 1993), and therefore enables more accurate
localization of sources underlying motion-evoked responses. A brief
report of the present study appeared in Aspell et al. (2000).

Materials and methods

Five healthy right-handed volunteers (two males M1–M2, three
females F1–F3; age range 22–41 years) participated in the MEG
recordings. Structural MR brain images were obtained for all subjects,
enabling anatomical source localization. The study was undertaken
with the understanding and informed consent of each subject. The
experimental procedures used in this study have been approved by the
Helsinki Uusimaa Ethics Committees.

Stimuli

The stimulus was presented in a two-phase motion sequence,
consisting of 400 limited lifetime white dots (luminance 23 cd ⁄m2),
each 0.27 deg · 0.27 deg square, randomly positioned in a
17.5 deg · 18 deg black field (luminance 0.6 cd ⁄m2), with an
average dot density of 1.27 dots ⁄ deg2. The stimulus was computer-
generated by custom-made programs (on a Silicon Graphics Indy or
PC) and projected onto a rear-projection screen at a viewing
distance of 84 cm, using a projector with Digital Light Processing
TM technology (VistaProTM, Christie Digital Systems Inc.,
Cypress, CA, USA). The projector hosts three digital micromirror
panels; thus the luminance onsets and offsets are symmetric and
abrupt, and all three colours are drawn simultaneously. Subjects
passively viewed the motion sequences while maintaining fixation
on a central white cross.
Each motion sequence consisted of two phases: an ‘incoherent’

phase of 883 ms, followed immediately by a ‘coherent’ phase of
400 ms. We chose this two-phase motion sequence because it allowed
us to distinguish between a general motion onset response and a
coherent motion onset response. The long duration of the incoherent
phase insures that the general motion onset response, which occurs in
response to the onset of incoherent motion, is well over before the
transient response to the change to coherent motion begins; the
responses are therefore separable. The long duration is also necessary
to prevent motion adaptation. Bach & Ullrich (1994) showed that a
short duty cycle (i.e. a stimulus with a relatively longer
stationary ⁄ incoherent phase than moving ⁄ coherent phase) emphasizes
the motion evoked N200 response. Our pilot studies also found that

relatively long incoherent phases produced larger amplitude responses
to coherent motion onset.
During the incoherent phase, all dots moved in random directions

at a speed of 8 deg ⁄ s. During the coherent phase, a variable
percentage of randomly chosen dots moved uniformly in one
direction (left or right horizontally) against the continued random
motion of the others. To prevent the subject tracking individual
dots, the program assigned 5% of dots on each frame a new
direction selected at random from either the ‘incoherent’ distribution
(uniform in direction from 0 to 360 degrees) or ‘coherent’
distribution (single in direction, either left or right), with the
probability of selection from the coherent distribution set by the
proportion of coherent dots in the current phase. At the displayed
frame rate of 60 Hz, all dots in a given display would be replaced
on average between two and three times in the incoherent sequence,
and at least once during the coherent phase. Dots remained static
on the screen in their stopping position between trials, with an
interstimulus interval of 2.5 s (see Fig. 1).
The proportion of coherent dots in the second phase and the

direction of coherent motion (left or right) were varied across
conditions. Each run lasted approximately 10 min and comprised
approximately 35 trials each of four conditions: 100%-right, 100%-
left, and the left and right directions of a test coherence level, either
40, 60 or 80%. (Conditions are hereafter labelled by the coherence
level of the coherent phase.) The presentation order of left and right
directions was randomised. Each subject performed 4–6 runs per
session, with two runs per test coherence block, tested consecutively
in ascending order (i.e. 100–40, 100–60, 100–80). Subjects performed
a maximum of two sessions to complete the experiment. The 60%
level was not tested on two subjects.

MEG recordings

Subjects passively viewed the stimuli while seated in a magnetically
shielded room, their heads positioned in the helmet of a 306-channel
VectorviewTM neuromagnetometer (Neuromag Ltd, Finland). Before
the MEG recordings, four head position marker coils were attached to
the subject’s scalp. The positions of the coils and of three anatomical
landmarks (nasion and points immediately anterior to the ear canals)
were measured with a 3D digitizer (3Space FastrakTM, Polhemus
Inc., Colchester, VT, USA). At the beginning of each recording block,
the position of the subject’s head with respect to the sensor array was
determined by feeding current to the coils. This information was
afterwards used to combine the measured neuromagnetic signals with
the subjects’ anatomical MRIs.

Fig. 1. Schematic illustration of visual motion stimulus showing the durations of the interstimulus interval (ISI) and the two different motion phases. See main text
for details.
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The cortical signals were measured at 102 head surface positions,
with two orthogonal planar gradiometers and one magnetometer at
each. The signals were initially bandpass filtered between 0.1 and
172 Hz and digitized at 0.6 kHz. Horizontal and vertical electro-
oculograms were recorded simultaneously with MEG and trials
contaminated by eye movements or blinks were rejected.

Data analysis

The averaged signals were preprocessed by omitting noisy channels,
attenuating environmental noise by projecting out noise subspaces
determined from empty room measurements (Parkkonen et al., 1999),
and applying a digital low pass filter at 40 Hz. The responses to
rightward and leftward motion did not differ from each other and were
therefore averaged together, resulting in approximately 100 trials per
average. (Note that the 100% conditions from distinct test coherence
level runs were not averaged together.)

We restricted our analysis to the 204 gradiometer channels, which
give the largest signals just above a locally activated brain area, and
therefore allow us to use the locations with largest signals as first
estimates of the activated brain areas. To discount sustained activity
elicited by the first phase of incoherent motion and to focus on sources
activated by the transition to coherent motion, we set the baseline for
signal analysis to the pre-transition period (700–883 ms). (This choice
of baseline setting can be justified because for all stimuli, the
incoherent motion phase was identical.) We used a spherical volume
conductor model, fitted to the posterior portion of the brain,
encompassing occipital, parietal and temporal regions. The sources
of the evoked responses were identified by searching for equivalent
current dipoles (ECDs) during restricted time periods after the
transition from incoherent to coherent motion. We focused on signals
generated in the posterior parts of the brain. Single dipoles were
searched by a least-squares fit to explain the responses on 15–32
channels centred over the channels with the largest motion-transition
responses. Only ECDs that explained at least 80% of the local field
variance on the selected sensors were accepted. The contribution of
the fitted source was then projected out of the measured signals using
the Signal Space Projection method (Uusitalo & Ilmoniemi, 1997) and
where possible, new dipole sources were fit to the part of the data not
explained by the first dipole. The whole sequence was repeated and
dipoles added until no signals above noise level remained unexplained
by the source model. All dipoles found in this way were then used to
explain the nonprojected data to reveal source strengths as a function
of time.

To examine explicitly the dependence of source strength on test
coherence level, we fitted dipoles to the 100% condition in each
distinct test coherence block, and then used these dipoles to explain
the responses in the respective paired test coherence condition. Thus,
for each subject, we obtained at least two distinct ‘100% dipoles’,
for the 100–40 and 100–80 blocks. The locations of the 100%
dipoles did not vary significantly, and in each case, the ‘100%
dipole’ explained as much or more variance than the ECD for the
paired condition.

Results

The averaged evoked responses over the full motion sequence showed
several features across subjects (see Fig. 2). In occipital and lateral
channels, two transient events (defined by activity with absolute
magnitude greater than three standard deviations of the prestimulus

signal variation) were obvious, around the onset and motion-transition
times of the stimulus. The first event was a triphasic complex that
began approximately 80 ms after the onset of incoherent motion. Its
middle deflection (of opposite polarity to the first deflection) was
typically the largest of the three, and peaked at approximately 220 ms
(171–238 ms, across subjects and coherence levels). This we assume
to be the magnetic counterpart of the classic electroencephalgraphic
N200 response (see Discussion), and we term it the ON-M220 peak.
The second event was a predominantly monophasic deflection, with
the same polarity as the ON-M220 peak. This peak, which we term the
TR-M230, occurred at approximately 230 ms after the transition from
incoherent to coherent motion (172–256 ms across subjects and
coherence levels). Both ON-M220 and TR-M230 were dominant in
the temporo-occipital and occipital regions. In all but one subject (F3),
there was a marked hemispheric asymmetry in the TR-M230
amplitude, it being much larger in several lateral occipital channels
in one hemisphere than the other.
Most importantly, for all subjects, the amplitude of TR-M230

clearly varied with the test coherence level in several lateral occipital
channels. Figure 2 illustrates these findings for one subject. The TR-
M230 peak varies with test coherence level in lateral occipital
channels, whereas there is no consistent variation either in the ON-220
peak or in the TR-M230 peak in response to the 100% condition from
different test coherence blocks. In further analysis, we therefore
focused only on those regions in which the TR-M230 peak varied with
test coherence level.
Insets in Fig. 3 illustrate for subject F2 the magnetic field patterns at

the peaks of the TR-M230 responses, and corresponding source areas
superimposed on her MR images. The sources are located in the
hMT+ ⁄V3A and superior temporal sulcus (STS) regions. For both
sources, there was a clear peak in activity around 230 ms after the
transition from incoherent to coherent motion. The amplitude of this
peak was highest for the 100% condition, and decreased for the 80%
and 40% conditions.
In all subjects, source modelling around the TR-M230 peak

revealed activation of several distinct cortical regions. Reliable
sources were found in three regions, with the following Talairach
co-ordinates (mean ± SEM): hMT+ ⁄V3A (5 ⁄ 5 subjects; left hemi-
sphere )33 ± 3, )68 ± 4, 12 ± 3; right hemisphere 38 ± 4, )71 ± 3,
6 ± 1), STS (4 ⁄ 5 subjects; right hemisphere 44 ± 4, )40 ± 6, 13 ± 4;
left hemisphere )56, )25, 8), and intraparietal sulcus (IPS) (1 ⁄ 5
subjects; right hemisphere 25, )63, 45). Figure 4 shows the locations
of the hMT+ ⁄V3A and STS sources for all five subjects overlaid on a
single MR brain image (from subject F1), transformed to standard
space using FLIRT, FMRIB’s Linear Image Registration Tool
(Jenkinson & Smith, 2001; Jenkinson et al., 2002). See Table 1 for
the Talairach co-ordinates of these sources in individual subjects. All
sources were strongly lateralized in each subject, except for
hMT+ ⁄V3A in subject F3 who showed bilateral hMT+ ⁄V3A activity.
In two female subjects (F1 and F2), hMT+ ⁄V3A activity was detected
only in the left hemisphere, and in the two male subjects, hMT+ ⁄V3A
activity was detected only in the right hemisphere. STS was also
lateralized, being dominant on the right in three out of four subjects.
The amplitude of the hMT+ ⁄V3A source strongly depended on the

motion coherence of the second phase, in general increasing with
increasing motion coherence (Fig. 5). An unbalanced, multiway,
repeated measures anova (subject · coherence) revealed significant
main effects for coherence level (F2,6 ¼ 11.54; P ¼ 0.0088) and
subject (F5,6 ¼ 40.17; P ¼ 0.0002), but no interaction effect
(F10,6 ¼ 1.29; P ¼ 0.393). Differences between means were com-
pared using the Bonferroni post hoc test; significant differences in
peak amplitude were found between 100% and 40% (P ¼ 0.009). A
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trend analysis revealed a significant linear trend for coherence
(P ¼ 0.003).
The STS source activity showed a similar dependence on motion

coherence (Fig. 5) and an unbalanced, multiway, repeated measures
anova revealed significant main effects for coherence level
(F2,4 ¼ 9.9; P ¼ 0.028) and near-significant effects for subject
(F3,4 ¼ 6.03; P ¼ 0.058), but no interaction effect (F6,4 ¼ 2.82;
P ¼ 0.1668). Significant differences between means (using the
Bonferroni post hoc test) were found between 100% and 40%
(P ¼ 0.035). A trend analysis revealed a significant linear trend for
coherence (P ¼ 0.012).
The peak latency for each dipole was measured as the time at which

its maximum activity (following the onset of coherent motion at
883 ms) occurred in the multidipole fit. For all five subjects, the peak
latency of the TR-M230 decreased with increasing motion coherence
(Fig. 6), for areas hMT+ ⁄V3A and STS or IPS. For hMT+ ⁄V3A
response latency, a two-way unbalanced anova revealed a significant
main effect for coherence level (F2,6 ¼ 17.17; P ¼ 0.0033) but not for
subject (F5,6 ¼ 4.1; P ¼ 0.06), and there was no interaction effect
(F10,6 ¼ 1.07; P ¼ 0.49). Significant differences between means
(using the Bonferroni post hoc test) were found between 100% and
40% (P ¼ 0.003) and between 80% and 40% (P ¼ 0.006). A trend
analysis revealed a significant linear trend for coherence (P ¼ 0.001).
Similarly, for STS latency, anova revealed significant main effects for
coherence level (F2,4 ¼ 7.54; P ¼ 0.044), and subject (F3,4 ¼ 7.28;
P ¼ 0.043), but no interaction effect (F6,4 ¼ 0.51; P ¼ 0.782). A trend
analysis revealed a significant linear trend for coherence (P ¼ 0.045).
No significant difference between hMT+ ⁄V3A and STS latencies
across coherence levels was found (F1,34 ¼ 1.01; P ¼ 0.314).

Fig. 3. Amplitudes of the MT+ and STS sources of subject F2 as a function of
time for different coherence conditions. Arrow marks the timepoint of transition
to coherent motion. Insets show magnetic field patterns at t ¼ 1120 ms during
presentation of 100% condition and corresponding source locations superim-
posed on structural MRIs. Averaged responses were baselined to 183 ms
preceding transition to coherent motion.

Fig. 4. Location of STS (blue squares) and hMT+ ⁄V3A sources (red circles)
in R, right hemisphere and L, left hemisphere. The six hMT ⁄ V3A sources
displayed are from all subjects and include two sources from subject F3 who
showed bilateral activation. Rendered image of standard space brain (from
subject F1) was created with MRIcro software (Rorden & Brett, 2000).

Fig. 2. (Top) Averaged responses of subject F3 to 100% coherence condition.
Paired planar gradiometer channels are shown for 48 posterior positions. The
two traces of each response pair show the latitudinal and longitudinal
derivatives of the magnetic field at the measurement site, as shown by the
symbols at the bottom right. (Bottom) Responses to different coherence
conditions in demonstrative channels over the mid-occipital (A) and lateral
occipital (B) region. ON, onset response; TR, transition (to coherent motion)
response. All responses are baselined to the time period 700–883 ms (i.e. to just
before motion transition). Arrow marks the time point of transition to coherent
motion. (C) Superimposed responses in channel B to six different presentations
of 100% coherence condition; three to leftwards motion only; three to
rightwards motion only. Each response is averaged over 43 to 58 trials.
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Discussion

MEG reveals several sources – hMT+ ⁄V3A, STS and IPS (in only one
subject) – that respond to the transition from incoherent to coherent
motion, consistent with recent fMRI and MEG studies (Heeger et al.,
1999; Rees et al., 2000; Braddick et al., 2001; Nakamura et al., 2003).
The activity of these sources varies with coherence.

hMT+ ⁄V3A
The Talairach co-ordinates of the motion sensitive sources identified in
the present study are consistent with those previously reported for
motion areas (e.g. Zeki et al., 1991; Watson et al., 1993; Tootell et al.,
1995; Rees et al., 2000). The mean co-ordinates for human MT
derived from these studies are 44, )68, 3 (right hemisphere) and )42,
)71, 2 (left hemisphere). The mean distances of hMT+ ⁄V3A dipoles
(Table 1) from these co-ordinates are, for right hMT+ ⁄V3A, 5, 3,
3 mm, and for left hMT+ ⁄V3A, 9, 5, 9 mm. The nearby motion
sensitive area V3A, with co-ordinates (from Tootell et al., 1997)
ranging from ±29, )86, )16 (central representation of V3A) to ±14,
)84, 19 (peripheral representation of V3A), is elongated along the

Table 1. Talairach co-ordinates of ECDs for TR-M230, averaged across the
several ‘100% dipoles’ for each subject (see text)

Subject

hMT+ ⁄ V3A STS

x y z x y z

F1 )38.3 )59.5 8.8 38.2 )43.6 15.6
F2 )26.9 )71.2 17.6 51.0 )29.4 6.1
F3 )34.2 )72.6 8.5
F3 41.9 )77.1 5.5
M1 42.9 )67.5 4.6 43.2 )48.1 17.7
M2 30.4 )68.6 7.4 )56.0 )24.7 7.5

Subject F3 did not show STS activation but had an active source in the inferior
parietal sulcus (co-ordinates 25.4, )63.4, 44.6).

Fig. 5. Mean (+ SEM) source amplitudes of hMT+ ⁄V3A and STS cortices
during the motion transition peak for different coherence levels. (*P < 0.05,
**P < 0.01). The correlations between the normalized source amplitudes and
motion coherence were 0.77 (P < 0.005) and 0.86 (P < 0.005) for the
hMT+ ⁄V3A and STS sources, respectively.

Fig. 6. (Top) Mean (+ SEM) peak latencies of the hMT+ ⁄ V3A and STS
sources after motion transition as a function of motion coherence. (*P < 0.05).
(Bottom) Subplots show results for individual subjects; distinct lines within
subplots represent distinct sources. Error bars show SEM for the 100%
conditions.
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superior-inferior axis of the brain. The source analysis in this study
does not permit reliable differentiation between the hMT complex and
V3A, and for this reason we refer to the source as hMT+ ⁄V3A.
The activity of hMT+ ⁄V3A in general increased monotonically with

increasing coherence in all subjects. This suggests an accompanying
increase in the number of MT neurons that are firing in synchrony.
What does this result tell us about neuronal properties in MT?
Single unit animal studies indicate that increasing coherence causes

the response of ‘local-motion’ or ‘opponent-surround’ MT neurons to
decrease (Allman et al., 1985; Tanaka et al., 1986), but the response of
‘global-motion’ neurons to increase (Reppas et al., 1997). Thus, if the
activity of ‘opponent-surround’ neurons were to dominate the
population response in human MT, we might expect the population
response to decrease with increasing motion coherence. Indeed, single
unit studies suggest that opponent-surround neurons do outnumber
‘global-motion’ neurons (Allman et al., 1985; Tanaka et al., 1986;
Xiao et al., 1997); for example, Bradley & Andersen (1998) report that
approximately 81% of MT neurons evince direction-specific surround
effects, and of these, approximately 88% show suppression rather than
excitation in response to the preferred direction.
The population response should depend not only on the relative

number of distinct neuronal types, but also on the effectiveness of the
stimuli for each type. Stimulus size is a crucial factor. Classical
receptive fields of local-motion neurons increase from between one
and two degrees at the fovea to above 15 degrees at 26 degrees
eccentricity (Raiguel et al., 1995), while the direction-specific
surround effects may occur up to eight degrees beyond the centre,
with maximal effects typically occurring at 1.5 times the centre radius
(Xiao et al., 1997). Thus, near-central stimuli larger than a few degrees
may be expected to recruit significant suppressive surrounds. For an
RDK stimulus, as the number of coherent moving dots increases,
increasing activation of the centre response may be counterbalanced
by increasing suppression from the surround, and there may be no
change in the population response. On the other hand, for small stimuli
that fit the classical receptive field sizes at the stimulated eccentricity,
the population response of ‘local-motion’ neurons would be expected
to increase with increasing coherence. Accordingly, Rees et al. (2000)
found a roughly linear increase in the fMRI blood oxygenation level
dependent (BOLD) response of MT with increasing coherence in
relatively small stimuli (4 degrees in diameter) displayed 4 degrees
from the fovea, and successfully predicted the results with a model of
neuronal firing using centre-only receptive fields without surround
antagonism. Conversely, McKeefry et al. (1997) found using PET that
hMT+ was activated more strongly by incoherent than coherent
motion relative to static patterns, for relatively large (20 degrees · 26
degrees) stimuli. For these stimuli, McKeefry et al. (1997) argue that
the suppressive surround response of local-motion neurons may
dominate the population response. Shulman et al. (1999) also argue
that they found enhanced activations (using PET) to motion-defined
gratings in hMT+ and other early visual areas for the same reason.
Stimulus size was therefore shown to be a very important factor in
determining the population response of MT neurons to coherent
motion stimuli.
In addition to stimulus size, the number, area coverage and contrast

of the discrete motion elements (the dots in an RDK) may also
regulate the effectiveness of the motion stimuli. As Braddick et al.
(2001) argued, significant activation of hMT+ by coherent motion
may arise only when the number of discrete dots visible to individual
neuronal receptive fields is large enough to allow for summation.
Tadin et al. (2003) found that increasing the size of low-contrast or
high-noise motion stimuli increases their direction discriminability,
whereas increasing the size of high-contrast or low-noise stimuli

decreases their discriminability. Tadin et al. (2003) argued that ‘local-
motion’ neurons are responsible for these perceptual phenomena, and
that ‘weak’ motion stimuli preferentially evoke spatial summation
over spatial suppression. It may be therefore that there is an optimal
range of dot-density and area coverage for RDKs within which the
stimuli are sufficiently weak to evoke spatial summation yet not
sufficiently powerful to evoke suppression, for ‘local-motion’ neurons.
On the other hand, if ‘global motion’ or ‘facilitatory-surround’

neurons were to dominate the population response, we would expect it
to increase with increasing motion coherence even for relatively large
or strong motion stimuli. Our finding fits this expectation, and is in
line with other human studies using fMRI (Braddick et al., 2000),
EEG (Niedeggen & Wist, 1998, 1999; Patzwahl & Zanker, 2000) and
MEG (Nakamura et al., 2003). The results of our study are also
qualitatively similar to those of Rees et al. (2000), but the considerable
differences in dot density and stimulus size suggest that different
neuronal mechanisms may underlie the similarity. Whereas Rees et al.
(2000) used small, very low density (approximately 2% area coverage,
with 20 discrete dots ⁄ deg2) stimuli, we used large (18 degrees in
diameter), moderate-density (approximately 10% area coverage, with
approximately 1.3 discrete dots ⁄ deg2) central stimuli. On the above
arguments, one would expect the two different stimuli to elicit
different responses from ‘local-motion’ neurons with large, nonclas-
sical suppressive surrounds, with ours being nonoptimal for the latter
(Raiguel et al., 1995). On the other hand, our stimuli are similar in size
and area coverage, but much larger in dot number than those of
McKeefry et al. (1997) (approximately 8.5% dot density, with
0.19 discrete dots ⁄ deg2), and therefore would be expected to provide
an even stronger stimulus to the suppressive surrounds of ‘local-
motion’ neurons. Yet, using even greater dot numbers and area
coverage, Braddick et al. (2001) also found greater activation with
fMRI to coherent motion compared with dynamic noise in hMT+,
V3A, STS, and IPS. Thus, we conclude that the increase in population
activity that we recorded with increasing coherence reflects a
dominant response from ‘global-motion’ neurons, which are suffi-
ciently stimulated by our relatively large and dense stimuli to
overcome the suppressive surround activity of ‘local-motion’ neurons.
This conclusion is supported by other recent MEG studies. Lam

et al. (2000) found for a moderate-sized (10 deg · 10 deg), moder-
ately dot-dense stimulus that incoherent and coherent motion activated
presumptive MT equally strongly, whereas Nakamura et al. (2003)
found for a very large (50 deg · 60 deg), relatively low-density
stimulus that the amplitude of MT activity increased with increasing
coherence.
The extrapolation from single unit measurements in animals to

population measurements with functional imaging in humans is
evidently not trivial. For example, where neural codes are sparse and
individual tuning curves broad and multidimensional, population
activity as measured by fMRI will be little influenced by the firing of
the few neurons that are tuned most strongly to the stimulus (see, e.g.
Scannell & Young, 1999). Nonetheless, direct comparison of neural
activity and blood oxygenation level dependent (BOLD) responses in
monkey visual cortex demonstrate that local neuronal field potentials
correlate with the haemodynamic response (Logothetis et al., 2001).
While MEG provides a more direct measure of neural activity than

does fMRI, it too is able only to detect the activity of thousands of
synchronous neurons, and in this study we considered only the time-
locked averages of such signals. Comparison of single cell firing rates
with MEG signals is therefore not a straightforward task, even so, our
results strongly support the conclusion that the activity of ‘global-
motion’ neurons in hMT+ dominates the population response to
relatively large, coherent-motion stimuli.
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STS

STS activation was detected in four out of five subjects and the
response in this area increased with increasing motion coherence
(Fig. 5). STS is a large and functionally diverse area; previous PET
and fMRI studies have found that STS is activated by visual motion
(Ahlfors et al., 1999) – including coherent visual motion (Dupont
et al., 1994; Shulman et al., 1998; Braddick et al., 2000), ‘biological
motion’ (Oram & Perrett, 1994; Vaina et al., 2001), and motion of
other individuals (Allison et al., 2000) – and includes an area that is
preferentially activated by moving mouths and lips (Puce et al., 1998).
The STS region in monkeys receives inputs from multiple sensory
modalities (Bruce et al., 1981) and may be involved in cross-modal
integration.

STS also appears to be involved in the extraction of form from
motion; human STS has been shown to integrate form and motion
(Puce et al., 2003; Schoenfeld et al., 2003) and this area is well
situated to provide a link between motion processing areas and object
identification areas in dorsal and ventral streams, respectively
(Felleman & Van Essen, 1991; Merigan & Maunsell, 1993). Dupont
et al. (1994) suggest that a region of STS (Talairach co-ordinates 52,
)38, 16) similar to the areas reported here (mean co-ordinates of the
right STS source 44, )40, 13) is the human homologue of monkey
parieto-vestibular cortex (PIVC). In monkeys PIVC responds to
uniform visual motion and receives input from vestibular cortex
(Grüsser et al., 1990).

Lateralization

One intriguing feature of these results is the marked lateralization of
the evoked response in hMT+ ⁄V3A and STS in most subjects.
Bilateral activation of the presumed human MT+ complex has been
reported (Dupont et al., 1994; Rees et al., 2000), but there is evidence
for the lateralization of the motion response (Probst et al., 1993;
Uusitalo et al., 1996; Niedeggen & Wist, 1998, 1999). An extensive
study into the hemispheric asymmetry of motion VEPs (Kubova et al.,
1990) found that in 60% of 80 subjects the maximum amplitude of N2
was recorded at the electrode over the right hemisphere. Left
hemisphere dominance was seen in only 20% of the subjects. In the
present study, for three subjects the dominant hMT+ ⁄V3A and STS
sources are in different hemispheres to each other, and for one subject,
in the same hemisphere.

Timing

We found that the peak latency of the TR-M230 source decreased with
increasing motion coherence for hMT+ ⁄V3A, STS and IPS. While
this finding is inconsistent with the nonsignificant increase in mean
peak latencies of the MEG response to increasing motion coherence
reported by Nakamura et al. (2003), it is in line with results from an
earlier study. Using EEG, Patzwahl & Zanker (2000) found an
approximately linear relationship between reaction time and the
latency of a transient component at �230 ms in a direction
discrimination experiment. The increased latency at lower coherence
levels may reflect the increased time necessary for temporal integra-
tion of motion signals to achieve the required level of confidence for
an accurate response to be generated (Snowden & Braddick, 1991;
Britten et al., 1992).

As Lam et al. (2000) argued, the latency of the magnetic evoked
response may reflect not only the latency of the individual neuronal
evoked responses but also the time needed to synchronize multiple

neuronal responses (see also Okada et al., 1997). If it is assumed that
each neuronal element under consideration produces a PSP-type
waveform, increasing synchrony results in a shortening of the peak
latency, as well as an increase in the sum response amplitude (Hari,
1990). Hence the increased latency in response to the transition to 40%
motion coherence might reflect the greater amount of time required to
synchronize the weak activity of neurons with similar preferred
directions at scattered locations across the visual field. For 100%
coherent motion, individual neurons whose preferred direction matches
the coherent motion direction will be more strongly activated as they
will sum the preferred direction across their whole receptive field.
For all subjects except one (M2) the latencies of TR-M230

overlapped for the different sources. Given that IPS and STS are
considered to be higher in the hierarchy of cortical areas than
hMT+ ⁄V3A, it is perhaps surprising that the latencies of TR-M230 do
not differ between these areas. Braddick et al. (2001) also found
activation of STS and IPS in response to coherent motion, using fMRI,
but attributed this to a feed-forward effect. The clear implication is that
the signal should arrive later in the anterior systems.
Our �200 ms latency for a motion onset response agrees well with

a large body of EEG and MEG studies on visual motion that define
the ‘N200 peak’ to motion onset (Kuba & Kubova, 1992; Bach &
Ullrich, 1994; Spileers et al., 1996; Skrandies et al., 1998; Hoffman
et al., 1999; Patzwahl & Zanker, 2000; Nakamura et al., 2003). The
response to coherent motion onset that we measure is rather late to
correspond to the processing in the ‘feedforward sweep’ of activation
(Lamme & Roelfsema, 2000) namely, the earliest activation,
following stimulus onset, of neurons in successive levels of the
cortical hierarchy (Felleman & Van Essen, 1991). Our finding that
STS and hMT+ ⁄V3A are activated by coherent motion onset with
almost identical latencies suggests that the two areas are processing
the information about coherent motion simultaneously and in
parallel. STS and hMT+ are known to be involved in extracting
structure and form from motion (Todd et al., 2000; Vanduffel et al.,
2000; Puce et al., 2003). It may be that the TR-M230 response we
measure in these areas reflects aspects of recurrent processing –
mediated by horizontal and ⁄ or feedback connections between and
within visual areas – necessary to group the coherently moving dots
into a distinct surface (Gilbert, 1993; Payne et al., 1996; Hupé et al.,
1998).
In conclusion, our results show that a transition from incoherent to

coherent motion elicits a prominent response in hMT+ ⁄V3A and STS
approximately 230 ms after the transition. These responses correlate
with the degree of motion coherence.
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