117 research outputs found

    Active afforestation of drained peatlands is not a viable option under the EU Nature Restoration Law

    Get PDF
    The EU Nature Restoration Law (NRL) is critical in restoring degraded ecosystems. However, active afforestation of degraded peatlands has been suggested by some as a restoration measure under the NRL. Here, we discuss the current state of scientific evidence on the climate mitigation effects of peatlands under forestry and its limitations, uncertainties and evidence gaps. Based on this discussion we conclude: Afforestation of drained peatlands, while maintaining their drained state, is not equivalent to ecosystem restoration. This approach will not restore the peatland ecosystem's flora, fauna, and functions. There is insufficient evidence to support the long-term climate change mitigation benefits of active afforestation of drained peatlands. Most studies only focus on the short-term gains in standing biomass and rarely explore the full life cycle emissions associated with afforestation of drained peatlands. Thus, it is unclear whether the CO2 sequestration of a forest on drained peatland can offset the carbon loss from the peat over the long term. In some ecosystems, such as abandoned or certain cutaway peatlands, afforestation may provide short-term benefits for climate change mitigation compared to taking no action. However, this approach violates the concept of sustainability by sacrificing the most space-effective carbon store of the terrestrial biosphere, the long-term peat store, for a shorter-term, less space-effective, and more vulnerable carbon store, namely tree biomass. Consequently, active afforestation of drained peatlands is not a viable option for climate mitigation under the EU Nature Restoration Law and might even impede future rewetting/restoration efforts. To restore degraded peatlands, hydrological conditions must first be improved, primarily through rewetting

    Towards the development of a UK Peatland Code: Payments for Ecosystem Services (PES) Pilot Research Project

    Get PDF
    This Final Report describes research into the rationale and basis for the development of a UK Peatland Code. The development of the Code was supported by the latest relevant research evidence, via an international expert workshop, and by feedback from the Code’s Steering Group and 17 individuals/organisations from across the UK. The Code was launched in September 2013, at the start of an 18-month pilot phase of operation, in which the Code will be further developed, and is available online: http://www.iucn-uk-peatlandprogramme.org/peatland-code. There is growing interest in the creation of new markets to facilitate private investment in the provision of ecosystem services, and this was a key emphasis of Defra’s 2011 Natural Environment White Paper. The White Paper led to the formation of an Ecosystem Markets Taskforce to identify business opportunities in the natural environment that recommended the development of a UK Peatland Code in its report in March 2013. Subsequently in May 2013, Defra published an action plan for developing the potential for payments for ecosystem services in which it committed to work in partnership with the IUCN and others to support the testing, development and launch later in 2013 of a pilot UK Peatland Code. UK peatlands are a relevant place to explore the potential to pay for ecosystem services, given the range and importance of ecosystem services that they supply, and that fact that many of these service are not widely or fully paid for via agricultural support payments or by markets. This has led to the degradation of many peatlands through inappropriate burning, overWgrazing and drainage, leading to reductions in carbon storage, water quality and biodiversity. Investing in conserving and restoring peatlands is therefore a key tool to help deliver the UK’s climate change obligations, whilst helping meet other national and international obligations on biodiversity and water quality. Although there is growing interest from the private sector in paying for some of these ecosystem services, and there have been a small number of bilateral agreements to pay for peatland restoration via the Corporate Social Responsibility market, there is a need to develop guidance, frameworks and monitoring to provide sponsors with the confidence necessary to restore peatlands on any significant scale. This Payment for Ecosystem Service (PES) pilot research project therefore conducted the research necessary to develop and launch a UK pilot Peatland Code, designed to support markets that could pay for the restoration and reWwetting of degraded peatlands across the UK. The research project and subsequent Code drew significantly on Defra’s PES Best Practice Guide, first identifying a saleable ecosystem service and prospective buyers and sellers, based on previous work and new market research conducted as part of this project (Phase 1 in the PES Guide). The Code establishes the principles for a peatland PES scheme, and resolves a number of technical issues, to make it possible for buyers and sellers to work together for peatland restoration (Phase 2 in the PES Guide). The Code also provides guidance on contracts and monitoring (Phases 3 and 4 of the PES Guide), and takes a bundled approach to PES (a ‘premium carbon’ scheme that provides a range of coWbenefits), whilst not ruling out the possibility of layered schemes (e.g. using the Code to elicit payments for climate mitigation benefits on top of existing schemes that pay for water quality benefits) (Phase 5 of the PES Guide). The research offers a number of insights into the creation of markets for ecosystem services linked to peatland restoration. It also offers insights of more general relevance to the creation and implementation of new markets for ecosystem services, which may be of relevance to other habitats and ecosystems in the UK, and to the development of new PES schemes internationally

    Mycobacterium avium subsp. paratuberculosis and microbiome profile of patients in a referral gastrointestinal diseases centre in the Sudan

    Get PDF
    Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne’s disease in animals with zoonotic potential; it has been linked to many chronic diseases in humans, especially gastrointestinal diseases (GID). MAP has been extensively studied in Europe and America, but little reports were published from Africa. Sudan is a unique country with close contact between humans and livestock. Despite such interaction, the one health concept is neglected in dealing with cases of humans with GID. In this study, patients admitted to the reference GID hospital in the Sudan over a period of 8 months were screened for presence of MAP in their faeces or colonic biopsies. A total of 86 patients were recruited for this study, but only 67 were screened for MAP, as 19 did not provide the necessary samples for analysis. Both real-time PCR and culture were used to detect MAP in the collected samples and the microbial diversity in patients´ faecal samples was investigated using 16S rDNA nanopore sequencing. In total, 27 (40.3%) patients were MAP positive: they were 15 males and 12 females, of ages between 21 and 80 years. Logistic regression analysis revealed no statistical significance for all tested variables in MAP positive patients (occupation, gender, contact with animal, milk consumption, chronic disease, etc.). A unique microbiome profile of MAP-positive patients in comparison to MAP-negative was found. These findings suggest that a considerable proportion of the population could be MAP infected or carriers. Therefore, increase awareness at community level is urgently needed to decrease the risk of MAP at human/animal interface. This study represents the first report of MAP in humans in the Sudan; nevertheless, a better view of the situation of MAP in humans in the country requires a larger study including patients with other conditions.Additional co-authors: Ahmad Amanzada, Kamal H. Eltom , ElSagad Eltaye

    Geo‐Hydromorphological Assessment of Europe’s Southernmost Blanket Bogs

    Get PDF
    Blanket bogs are a globally rare type of ombrotrophic peatland internationally recognised for long‐term terrestrial carbon storage, the potential to serve as carbon sinks, habitat provision and for their palaeoenvironmental archive. This habitat is protected in the European Union under the Habitats Directive (92/43/EEC), but a number of blanket bogs located in the Cantabrian Mountains (northern Spain), representing the southernmost known edge‐of‐range for this habitat in Europe, are currently not recognised and are at increased threat of loss. Using climatic data, topography, aerial photography and peat depth surveys, this study has identified ten new areas of blanket bog located between the administrative regions of Cantabria and Castilla y León. Peat depth data and topography were used to provide a detailed geomorphological description and hydromorphological classification (mesotope units) of these currently unrecognised areas of blanket bog. Maximum peat depth measured across the ten sites ranged from 1.61 m to 3.78 m covering a total area of 18.6 ha of blanket bog (> 40 cm peat depth). The volume of peat accumulated across the sites was determined to be more than 216,000 m3 and is estimated to hold 19.89 ± 3.51kt C. Twenty‐four individual hydrological mesotope units were described indicating a diverse assemblage of blanket bogs in this region. The peatlands identified in this research extend the known limit of blanket bogs in Europe farther south than previously recorded and combined with four other unprotected blanket bogs recently identified in the Cantabrian Mountains, these peatlands represent 10.5% of blanket bog currently recognised and protected in Spain. The range of anthropogenic pressures currently acting on peatlands in the Cantabrian Mountains indicates that without protection these important landforms and carbon stored may be lost. An urgent update of European peatland inventories is thus required to preserve these valuable carbon stores and potential carbon sinks

    The Schnitzler syndrome

    Get PDF
    The Schnitzler syndrome is a rare and underdiagnosed entity which is considered today as being a paradigm of an acquired/late onset auto-inflammatory disease. It associates a chronic urticarial skin rash, corresponding from the clinico-pathological viewpoint to a neutrophilic urticarial dermatosis, a monoclonal IgM component and at least 2 of the following signs: fever, joint and/or bone pain, enlarged lymph nodes, spleen and/or liver, increased ESR, increased neutrophil count, abnormal bone imaging findings. It is a chronic disease with only one known case of spontaneous remission. Except of the severe alteration of quality of life related mainly to the rash, fever and pain, complications include severe inflammatory anemia and AA amyloidosis. About 20% of patients will develop a lymphoproliferative disorder, mainly Waldenström disease and lymphoma, a percentage close to other patients with IgM MGUS. It was exceedingly difficult to treat patients with this syndrome until the IL-1 receptor antagonist anakinra became available. Anakinra allows a complete control of all signs within hours after the first injection, but patients need continuous treatment with daily injections

    Predicting Concentrations of Organic Chemicals in Fish by Using Toxicokinetic Models

    Get PDF
    Quantification of chemical toxicity continues to be generally based on measured external concentrations. Yet, internal chemical concentrations have been suggested to be a more suitable parameter. To better understand the relationship between the external and internal concentrations of chemicals in fish, and to quantify internal concentrations we compared three. toxicokinetic (TK) models with each other and with literature data of measured concentrations of 39 chemicals. Two one, compartment models, together with the physiologically based toxicokinetic (PBTK) model, in which we improved the treatment of lipids, were used to predict concentrations of organic chemicals in two fish species: rainbow trout (Oncorhynchus mykiss) and fathead minnow (Pimephales promelas). All models predicted the measured internal concentrations in fish within I order of magnitude for at least 68% of the chemicals. Furthermore, the PBTK model outperformed the one-compartment models with respect to simulating chemical concentrations in the whole body (at least 88% of internal concentrations were predicted within 1 order of magnitude using the PBTK model). All the models can be used to predict concentrations in different fish species without additional experiments. However, further development of TK models is required for polar, ionizable, and easily biotransformed compounds

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0\u20135 and 5\u201315 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10\ub0C (mean = 3.0 \ub1 2.1\ub0C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 \ub1 2.3\ub0C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler ( 120.7 \ub1 2.3\ub0C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore