107 research outputs found

    Rare coding variants in RCN3 are associated with blood pressure

    Get PDF
    Background: While large genome-wide association studies have identified nearly one thousand loci associated with variation in blood pressure, rare variant identification is still a challenge. In family-based cohorts, genome-wide linkage scans have been successful in identifying rare genetic variants for blood pressure. This study aims to identify low frequency and rare genetic variants within previously reported linkage regions on chromosomes 1 and 19 in African American families from the Trans-Omics for Precision Medicine (TOPMed) program. Genetic association analyses weighted by linkage evidence were completed with whole genome sequencing data within and across TOPMed ancestral groups consisting of 60,388 individuals of European, African, East Asian, Hispanic, and Samoan ancestries. Results: Associations of low frequency and rare variants in RCN3 and multiple other genes were observed for blood pressure traits in TOPMed samples. The association of low frequency and rare coding variants in RCN3 was further replicated in UK Biobank samples (N = 403,522), and reached genome-wide significance for diastolic blood pressure (p = 2.01 × 10- 7). Conclusions: Low frequency and rare variants in RCN3 contributes blood pressure variation. This study demonstrates that focusing association analyses in linkage regions greatly reduces multiple-testing burden and improves power to identify novel rare variants associated with blood pressure traits

    Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation

    Get PDF
    We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9×10⁻ÂčÂč to 5.0×10⁻ÂČÂč). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved  in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6×10⁻⁶). Our results provide new evidence for the role of DNA methylation in blood pressure regulation

    Genome-wide Linkage and Regional Association Study of Obesity-related Phenotypes: The GenSalt study

    Get PDF
    ObjectiveTo identify chromosomal regions harboring quantitative trait loci (QTL) for waist circumference (WC) and body mass index (BMI).Design and MethodsWe conducted a genome-wide linkage scan and regional association study WC and BMI among 633 Chinese families.ResultsA significant linkage signal for WC was observed at 22q13.31–22q13.33 in the overall analysis (LOD=3.13). Follow-up association study of 22q13.31–13.33 revealed an association between the TBC1D22A gene marker rs16996195 and WC (false discovery rate (FDR)-Q<0.05). In gender-stratified analysis, suggestive linkage signals were attained for WC at 2p24.3–2q12.2 and 22q13.33 among females (LOD=2.54 and 2.15, respectively). Among males, 6q12–6q13 was suggestively linked to BMI (LOD= 2.03). Single marker association analyses at these regions identified male-specific relationships of 6 single nucleotide polymorphisms (SNPs) at 2p24.3–2q12.2 (rs100955, rs13020676, rs13014034, rs12990515, rs17024325 and rs2192712) and 5 SNPs at 6q12–6q13 (rs7747318, rs7767301, rs12197115, rs12203049, and rs9454847) with the obesity-related phenotypes (all FDR-Q<0.05). At chromosome 6q12–6q13, markers rs7755450 and rs11758293 predicted BMI in females (both FDR-Q<0.05).ConclusionsWe described genomic regions on chromosomes 2, 6, and 22 which may harbor important obesity-susceptibility loci. Follow-up study of these regions revealed several novel variants associated with obesity related traits. Future work to confirm these promising findings is warranted

    Rare Coding Variants in RCN3 Are Associated with Blood Pressure

    Get PDF
    BACKGROUND: While large genome-wide association studies have identified nearly one thousand loci associated with variation in blood pressure, rare variant identification is still a challenge. In family-based cohorts, genome-wide linkage scans have been successful in identifying rare genetic variants for blood pressure. This study aims to identify low frequency and rare genetic variants within previously reported linkage regions on chromosomes 1 and 19 in African American families from the Trans-Omics for Precision Medicine (TOPMed) program. Genetic association analyses weighted by linkage evidence were completed with whole genome sequencing data within and across TOPMed ancestral groups consisting of 60,388 individuals of European, African, East Asian, Hispanic, and Samoan ancestries. RESULTS: Associations of low frequency and rare variants in RCN3 and multiple other genes were observed for blood pressure traits in TOPMed samples. The association of low frequency and rare coding variants in RCN3 was further replicated in UK Biobank samples (N = 403,522), and reached genome-wide significance for diastolic blood pressure (p = 2.01 × 10− 7). CONCLUSIONS: Low frequency and rare variants in RCN3 contributes blood pressure variation. This study demonstrates that focusing association analyses in linkage regions greatly reduces multiple-testing burden and improves power to identify novel rare variants associated with blood pressure traits

    Mortality from suicide and other external cause injuries in China: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Premature death from suicide is a leading cause of death worldwide. However, the pattern and risk factors for suicide and other external cause injuries are not well understood. This study investigates mortality from suicide and other injuries and associated risk factors in China.</p> <p>Methods</p> <p>A prospective cohort study of 169,871 Chinese adults aged 40 years and older was conducted. Mortality due to suicide or other external cause injuries was recorded.</p> <p>Results</p> <p>Mortality from all external causes was 58.7/100,000 (72.3 in men and 44.4 in women): 14.1/100,000 (14.2 in men and 14.2 in women) for suicide and 44.6/100,000 (58.1 in men and 30.2 in women) for other external cause injuries. Transport accidents (17.2/100,000 overall, 23.4 in men and 10.8 in women), accidental poisoning (7.5/100,000 overall, 10.2 in men and 4.8 in women), and accidental falls (5.7/100,000 overall, 6.5 in men and 5.0 in women) were the three leading causes of death from other external cause injuries in China. In the multivariable analysis, male sex (relative risk [RR] 1.56, 95% confidence interval [CI] 1.03-2.38), age 70 years and older (2.27, 1.29-3.98), living in north China (1.68, 1.20-2.36) and rural residence (2.82, 1.76-4.51) were associated with increased mortality from suicide. Male sex (RR 2.50, 95% CI 1.95-3.20), age 60-69 years (1.93, 1.45-2.58) and 70 years and older (3.58, 2.58-4.97), rural residence (2.29, 1.77-2.96), and having no education (1.56, 1.00-2.43) were associated with increased mortality from other external cause injuries, while overweight (0.60, 0.43-0.83) was associated with decreased risk of mortality from other external cause injuries.</p> <p>Conclusions</p> <p>External cause mortality has become a major public health problem in China. Developing an integrated national program for the prevention of mortality due to external cause injuries in China is warranted.</p

    Association of inflammation and endothelial dysfunction with metabolic syndrome, prediabetes and diabetes in adults from Inner Mongolia, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We examined the association of biomarkers of inflammation and endothelial dysfunction with diabetes and metabolic syndrome (MetS) in persons from Inner Mongolia.</p> <p>Methods</p> <p>A cross-sectional study was conducted among 2,536 people aged 20 years and older from Inner Mongolia, China. Overnight fasting blood samples were obtained to measure plasma concentrations of high sensitivity C-reactive protein (hsCRP), soluble inter-cellular adhesion molecule-1 (sICAM-1), sE-selectin, angiotensin II, high density lipoprotein cholesterol, triglycerides, and blood glucose. Waist circumference and blood pressure were measured by trained staff. MetS was defined according to the modified ATP III definition for Asians. Elevated level of the biomarker was defined as values in the upper tertile of the distribution. Participants were categorized into one of four groups based on the presence or absence of metabolic and glycemic abnormalities: 1) free of prediabetes, diabetes and MetS (reference group), 2) prediabetes or diabetes only, 3) MetS without prediabetes or diabetes, and 4) MetS plus prediabetes or diabetes. The multivariable models are adjusted for age, gender, smoking, drinking, family history of hypertension, and body mass index.</p> <p>Results</p> <p>Among study participants, 18.5% had prediabetes, 3.6% had diabetes, and 27.4% of the entire study population had 3 or more components of the MetS. Elevated hsCRP was associated with an increased odds of prediabetes or diabetes only, MetS without prediabetes or diabetes, and MetS plus prediabetes or diabetes with multivariable adjusted odds ratios (95% confidence intervals) of 2.3 (1.7-3.1), 3.0 (2.4-3.8), and 5.8 (4.5-7.5), respectively. Elevated sICAM-1 was associated with increased odds (95% CI) of prediabetes or diabetes only (2.1, 1.6-2.9) and MetS plus prediabetes or diabetes (4.2, 3.2-5.3) but was not associated with MetS alone. Elevated sE-selectin was associated with a modestly increased risk of MetS (OR 1.7, 95% CI 1.4-2.2). Elevated levels of Angiotensin II were not associated with the MetS plus prediabetes or diabetes in this study.</p> <p>Conclusions</p> <p>Diabetes and the MetS are common in the Inner Mongolia population. The biomarkers of inflammation and endothelial dysfunction are associated with increased risk for diabetes and MetS in this population. These results are consistent with results from other populations.</p

    Rare Variants in Long Non-Coding RNAs Are Associated With Blood Lipid Levels in the TOPMed Whole-Genome Sequencing Study

    Get PDF
    Long non-coding RNAs (lncRNAs) are known to perform important regulatory functions in lipid metabolism. Large-scale whole-genome sequencing (WGS) studies and new statistical methods for variant set tests now provide an opportunity to assess more associations between rare variants in lncRNA genes and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 participants of diverse ancestries with measurement of blood lipids and lipoproteins (LDL-C, HDL-C, TC, and TG) in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program to investigate the role of lncRNAs in lipid variability. We aggregated rare variants for 165,375 lncRNA genes based on their genomic locations and conducted rare-variant aggregate association tests using the STAAR (variant-set test for association using annotation information) framework. We performed STAAR conditional analysis adjusting for common variants in known lipid GWAS loci and rare-coding variants in nearby protein-coding genes. Our analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all of which were located in known lipid GWAS loci (in a ±500-kb window of a Global Lipids Genetics Consortium index variant). Notably, 61 out of 83 signals (73%) were conditionally independent of common regulatory variation and rare protein-coding variation at the same loci. We replicated 34 out of 61 (56%) conditionally independent associations using the independent UK Biobank WGS data. Our results expand the genetic architecture of blood lipids to rare variants in lncRNAs

    Whole genome sequence analysis of blood lipid levels in &gt;66,000 individuals

    Get PDF
    Blood lipids are heritable modifiable causal factors for coronary artery disease. Despite well-described monogenic and polygenic bases of dyslipidemia, limitations remain in discovery of lipid-associated alleles using whole genome sequencing (WGS), partly due to limited sample sizes, ancestral diversity, and interpretation of clinical significance. Among 66,329 ancestrally diverse (56% non-European) participants, we associate 428M variants from deep-coverage WGS with lipid levels; ~400M variants were not assessed in prior lipids genetic analyses. We find multiple lipid-related genes strongly associated with blood lipids through analysis of common and rare coding variants. We discover several associated rare non-coding variants, largely at Mendelian lipid genes. Notably, we observe rare LDLR intronic variants associated with markedly increased LDL-C, similar to rare LDLR exonic variants. In conclusion, we conducted a systematic whole genome scan for blood lipids expanding the alleles linked to lipids for multiple ancestries and characterize a clinically-relevant rare non-coding variant model for lipids
    • 

    corecore